The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling

随机建模 计算机科学 复制 等价(形式语言) 随机模拟 随机过程 人口 流行病模型 数学优化 数学 统计 人口学 离散数学 社会学
作者
Ziyu Zhao,Yi Zhou,Jinxing Guan,Yan Yan,Zhao Jing,Zhihang Peng,Feng Chen,Yang Zhao,Fang Shao
出处
期刊:Journal of Biomedical Research [Journal of Biomedical Research]
卷期号:38 (2): 175-175
标识
DOI:10.7555/jbr.37.20230137
摘要

Deterministic compartment models (CMs) and stochastic models, including stochastic CMs and agent-based models, are widely utilized in epidemic modeling. However, the relationship between CMs and their corresponding stochastic models is not well understood. The present study aimed to address this gap by conducting a comparative study using the susceptible, exposed, infectious, and recovered (SEIR) model and its extended CMs from the coronavirus disease 2019 modeling literature. We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations. Based on this equivalence, we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment. The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics. However, it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs. Additionally, we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents. This model offered a balance between computational efficiency and accuracy. The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling. Furthermore, the results had implications for the development of hybrid models that integrated the strengths of both frameworks. Overall, the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助晴子采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
兰兰不懒发布了新的文献求助10
4秒前
Hello应助佐zzz采纳,获得10
4秒前
5秒前
老实的斌完成签到 ,获得积分10
6秒前
2425完成签到,获得积分10
7秒前
田様应助专一的戒指采纳,获得10
8秒前
fengwanru发布了新的文献求助10
8秒前
维尼熊完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
铅笔刀完成签到,获得积分10
13秒前
淡淡萍完成签到,获得积分10
13秒前
yilia完成签到,获得积分10
14秒前
丘比特应助guo采纳,获得30
15秒前
JW完成签到,获得积分10
17秒前
huihui完成签到,获得积分10
19秒前
快乐的寄容完成签到 ,获得积分10
22秒前
24秒前
24秒前
真君山山长完成签到,获得积分10
26秒前
MYunn完成签到,获得积分10
27秒前
lokiyyy发布了新的文献求助10
28秒前
28秒前
30秒前
深情安青应助彭瞻采纳,获得10
30秒前
xiaomi发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
34秒前
彭于晏应助找文献呢采纳,获得10
35秒前
量子星尘发布了新的文献求助10
36秒前
长度2到完成签到,获得积分10
36秒前
37秒前
桐桐应助lokiyyy采纳,获得10
39秒前
传奇3应助twotwomi采纳,获得10
39秒前
boging完成签到 ,获得积分10
40秒前
mumumu发布了新的文献求助30
41秒前
1234567完成签到,获得积分20
41秒前
lic关闭了lic文献求助
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700