The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling

随机建模 计算机科学 复制 等价(形式语言) 随机模拟 随机过程 人口 流行病模型 数学优化 数学 统计 人口学 离散数学 社会学
作者
Ziyu Zhao,Yi Zhou,Jinxing Guan,Yan Yan,Zhao Jing,Zhihang Peng,Feng Chen,Yang Zhao,Fang Shao
出处
期刊:Journal of Biomedical Research [Journal of Biomedical Research]
卷期号:38 (2): 175-175
标识
DOI:10.7555/jbr.37.20230137
摘要

Deterministic compartment models (CMs) and stochastic models, including stochastic CMs and agent-based models, are widely utilized in epidemic modeling. However, the relationship between CMs and their corresponding stochastic models is not well understood. The present study aimed to address this gap by conducting a comparative study using the susceptible, exposed, infectious, and recovered (SEIR) model and its extended CMs from the coronavirus disease 2019 modeling literature. We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations. Based on this equivalence, we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment. The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics. However, it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs. Additionally, we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents. This model offered a balance between computational efficiency and accuracy. The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling. Furthermore, the results had implications for the development of hybrid models that integrated the strengths of both frameworks. Overall, the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助qah采纳,获得10
刚刚
苏东湾仔发布了新的文献求助10
刚刚
在我梦里绕完成签到,获得积分10
刚刚
2秒前
3秒前
Criminology34应助安全123采纳,获得10
3秒前
认真的向卉完成签到,获得积分10
3秒前
曹广秀完成签到,获得积分10
3秒前
科研通AI6应助Zhusy采纳,获得10
4秒前
多情的凉面关注了科研通微信公众号
4秒前
韶华若锦完成签到 ,获得积分10
5秒前
蓝天应助琉琉硫采纳,获得10
5秒前
科研通AI6应助kyf采纳,获得10
6秒前
99完成签到,获得积分10
6秒前
胡大嘴先生完成签到,获得积分10
6秒前
科研通AI6应助liujingbin采纳,获得10
6秒前
随便叫点啥完成签到,获得积分10
7秒前
Ma完成签到,获得积分10
7秒前
科研王帝同学完成签到 ,获得积分10
7秒前
陈M雯完成签到 ,获得积分10
8秒前
HMLM完成签到,获得积分10
8秒前
冰雪痕完成签到 ,获得积分10
8秒前
噜噜噜噜噜完成签到,获得积分10
9秒前
Neo完成签到,获得积分10
9秒前
初遇之时最暖完成签到,获得积分10
10秒前
10秒前
liliuuuuuuuu完成签到 ,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
大方向秋完成签到,获得积分10
10秒前
Jasper应助好运莲莲采纳,获得10
10秒前
11秒前
chojo发布了新的文献求助10
12秒前
天天快乐应助立青采纳,获得10
15秒前
15秒前
雨寒完成签到 ,获得积分10
15秒前
木光完成签到,获得积分10
15秒前
QQ发布了新的文献求助10
16秒前
缥缈的寄风完成签到 ,获得积分10
16秒前
NexusExplorer应助奈落采纳,获得10
17秒前
彩色凌文发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183