The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling

随机建模 计算机科学 复制 等价(形式语言) 随机模拟 随机过程 人口 流行病模型 数学优化 数学 统计 人口学 离散数学 社会学
作者
Ziyu Zhao,Yi Zhou,Jinxing Guan,Yan Yan,Zhao Jing,Zhihang Peng,Feng Chen,Yang Zhao,Fang Shao
出处
期刊:Journal of Biomedical Research [Journal of Biomedical Research]
卷期号:38 (2): 175-175
标识
DOI:10.7555/jbr.37.20230137
摘要

Deterministic compartment models (CMs) and stochastic models, including stochastic CMs and agent-based models, are widely utilized in epidemic modeling. However, the relationship between CMs and their corresponding stochastic models is not well understood. The present study aimed to address this gap by conducting a comparative study using the susceptible, exposed, infectious, and recovered (SEIR) model and its extended CMs from the coronavirus disease 2019 modeling literature. We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations. Based on this equivalence, we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment. The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics. However, it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs. Additionally, we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents. This model offered a balance between computational efficiency and accuracy. The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling. Furthermore, the results had implications for the development of hybrid models that integrated the strengths of both frameworks. Overall, the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到,获得积分10
1秒前
踏实的兔子完成签到 ,获得积分10
2秒前
xfq发布了新的文献求助10
2秒前
2秒前
xixi很困完成签到,获得积分10
2秒前
vine完成签到,获得积分10
2秒前
韩han发布了新的文献求助10
5秒前
5秒前
小五完成签到 ,获得积分10
5秒前
5秒前
6秒前
Flynn完成签到 ,获得积分10
7秒前
7秒前
天天快乐应助马皓采纳,获得10
8秒前
8秒前
wxl发布了新的文献求助10
8秒前
yelllllllllow发布了新的文献求助10
9秒前
9秒前
Zz发布了新的文献求助10
9秒前
10秒前
10秒前
啦啦啦啦呼完成签到,获得积分10
10秒前
科研通AI6应助三木采纳,获得10
10秒前
Ming Chen发布了新的文献求助10
11秒前
科研通AI6应助木子采纳,获得80
11秒前
科研通AI6应助ww采纳,获得10
12秒前
无花果应助风中尔蝶采纳,获得10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
星辰大海应助Aurora.H采纳,获得30
13秒前
求助人员发布了新的文献求助10
13秒前
霍师傅发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助JJing采纳,获得10
15秒前
15秒前
tt完成签到,获得积分10
15秒前
丘比特应助Yuan88采纳,获得10
17秒前
有魅力老三完成签到,获得积分10
17秒前
enmnm完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013