The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling

随机建模 计算机科学 复制 等价(形式语言) 随机模拟 随机过程 人口 流行病模型 数学优化 数学 统计 人口学 离散数学 社会学
作者
Ziyu Zhao,Yi Zhou,Jinxing Guan,Yan Yan,Zhao Jing,Zhihang Peng,Feng Chen,Yang Zhao,Fang Shao
出处
期刊:Journal of Biomedical Research [Journal of Biomedical Research]
卷期号:38 (2): 175-175
标识
DOI:10.7555/jbr.37.20230137
摘要

Deterministic compartment models (CMs) and stochastic models, including stochastic CMs and agent-based models, are widely utilized in epidemic modeling. However, the relationship between CMs and their corresponding stochastic models is not well understood. The present study aimed to address this gap by conducting a comparative study using the susceptible, exposed, infectious, and recovered (SEIR) model and its extended CMs from the coronavirus disease 2019 modeling literature. We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations. Based on this equivalence, we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment. The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics. However, it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs. Additionally, we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents. This model offered a balance between computational efficiency and accuracy. The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling. Furthermore, the results had implications for the development of hybrid models that integrated the strengths of both frameworks. Overall, the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuLu发布了新的文献求助10
刚刚
舒心凡应助三斤鱼采纳,获得10
1秒前
lhxing完成签到,获得积分10
1秒前
台台发布了新的文献求助10
3秒前
鸽子完成签到,获得积分10
4秒前
miosha发布了新的文献求助10
4秒前
lhxing发布了新的文献求助10
4秒前
5秒前
小小应助高大草莓采纳,获得30
5秒前
Ginny发布了新的文献求助30
6秒前
7秒前
王梦完成签到 ,获得积分10
8秒前
舒心凡应助eyu采纳,获得50
8秒前
8秒前
shaychomac发布了新的文献求助10
9秒前
hnxxangel完成签到,获得积分10
9秒前
9秒前
爆米花应助木木采纳,获得10
10秒前
缓慢发卡完成签到,获得积分10
11秒前
17835152738完成签到,获得积分10
11秒前
12秒前
风中雨竹发布了新的文献求助10
12秒前
默默紊发布了新的文献求助10
12秒前
张巨锋完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助20
15秒前
16秒前
buno应助鞘皮采纳,获得10
16秒前
17秒前
无花果应助逗号采纳,获得10
18秒前
传奇3应助大气孱采纳,获得10
18秒前
Rouadou完成签到 ,获得积分10
21秒前
luen发布了新的文献求助10
21秒前
23秒前
华仔应助神秘的路人甲采纳,获得10
24秒前
默默紊完成签到,获得积分10
24秒前
牢大完成签到,获得积分10
24秒前
eee7完成签到,获得积分10
27秒前
san完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助岳麓山老农采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335