The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling

随机建模 计算机科学 复制 等价(形式语言) 随机模拟 随机过程 人口 流行病模型 数学优化 数学 统计 人口学 离散数学 社会学
作者
Ziyu Zhao,Yi Zhou,Jinxing Guan,Yan Yan,Zhao Jing,Zhihang Peng,Feng Chen,Yang Zhao,Fang Shao
出处
期刊:Journal of Biomedical Research [Journal of Biomedical Research]
卷期号:38 (2): 175-175
标识
DOI:10.7555/jbr.37.20230137
摘要

Deterministic compartment models (CMs) and stochastic models, including stochastic CMs and agent-based models, are widely utilized in epidemic modeling. However, the relationship between CMs and their corresponding stochastic models is not well understood. The present study aimed to address this gap by conducting a comparative study using the susceptible, exposed, infectious, and recovered (SEIR) model and its extended CMs from the coronavirus disease 2019 modeling literature. We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations. Based on this equivalence, we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment. The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics. However, it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs. Additionally, we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents. This model offered a balance between computational efficiency and accuracy. The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling. Furthermore, the results had implications for the development of hybrid models that integrated the strengths of both frameworks. Overall, the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zx_1993应助wackykao采纳,获得10
1秒前
小雕完成签到,获得积分10
1秒前
1秒前
Bowen发布了新的文献求助10
1秒前
1秒前
勤奋的琳完成签到,获得积分20
2秒前
科研通AI6应助三七采纳,获得10
2秒前
3秒前
3秒前
zzy完成签到 ,获得积分10
3秒前
小柒发布了新的文献求助10
3秒前
xinxin发布了新的文献求助10
4秒前
勤奋的琳发布了新的文献求助10
4秒前
黎黎学化学完成签到 ,获得积分10
5秒前
JamesPei应助刘一一采纳,获得10
5秒前
6秒前
6秒前
Vonnie发布了新的文献求助10
7秒前
大大发布了新的文献求助10
7秒前
怪咖关注了科研通微信公众号
7秒前
路遥知马力完成签到,获得积分10
9秒前
10秒前
林子发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
香蕉觅云应助海比天蓝采纳,获得10
11秒前
充电宝应助海比天蓝采纳,获得10
12秒前
12秒前
yfy_fairy发布了新的文献求助10
12秒前
风时因絮发布了新的文献求助10
14秒前
14秒前
xixi完成签到 ,获得积分10
15秒前
15秒前
15秒前
zhou完成签到 ,获得积分10
15秒前
15秒前
研友_VZG7GZ应助。.。采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175