TEM1Dformer: A Novel 1-D Time Series Deep Denoising Network for TEM Signals

计算机科学 降噪 深度学习 卷积神经网络 人工智能 电子工程 噪音(视频) 变压器 人工神经网络 工程类 电压 电气工程 图像(数学)
作者
Dawei Pan,Tingye Qi,Guorui Feng,Haochen Wang,Zhicheng Zhang,Xiaoya Wei
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 414-426 被引量:1
标识
DOI:10.1109/jsen.2023.3330468
摘要

The transient electromagnetic method (TEM) is widely used in geophysical exploration tasks of minerals, goaves, and groundwater, but the received secondary induced electromotive force is susceptible to external noise interference and attenuation distortion. Deep learning has been used for transient electromagnetic signal denoising tasks and outperforms traditional algorithms. However, the existing convolutional neural network (CNN) has limitations in modeling the global time-series relationships of the data; Transformer is vulnerable to the interference of redundant information in the time-series data, and the computing power requirements are difficult to meet the needs of engineering deployment. To solve the above problems, this paper proposes a new one-dimensional time series denoising framework. This framework adopts one-dimensional convolution and Vision Transformer (ViT) encoder architecture, which reduces the computational requirements of the Transformer, retains the local perception characteristics of the convolution network and the global perception characteristics of the transformer and combines multi-task loss function and dense connection residual structure to optimize the denoising performance of the model. The TEM signal dataset is constructed by selecting multiple types of noise and power model parameters. The simulation signal test shows that compared with other typical algorithms, this work achieves the best performance in the one-dimensional sequential denoising task for transient electromagnetic. The model denoising research is carried out with transient electromagnetic field signals collected from iron ore mine in western Shanxi Province, China. The results show that the accuracy of data interpretation is effectively improved, and the validity of the proposed model is verified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助泥花采纳,获得10
刚刚
积极的含灵完成签到,获得积分20
刚刚
温暖的时光完成签到,获得积分10
1秒前
1秒前
mlly发布了新的文献求助10
1秒前
1秒前
1秒前
善学以致用应助YUANBIAO采纳,获得10
1秒前
东方元语应助王哈哈采纳,获得20
1秒前
2秒前
kun发布了新的文献求助10
2秒前
zzxxll发布了新的文献求助10
2秒前
2秒前
嘿嘿发布了新的文献求助10
2秒前
smottom应助奶茶菌采纳,获得10
2秒前
2秒前
科研通AI6应助欢喜采纳,获得10
2秒前
Ava应助悦耳的听双采纳,获得10
2秒前
xueshu发布了新的文献求助10
2秒前
3秒前
Helen发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
隐形曼青应助沈秋作采纳,获得10
4秒前
梁海萍完成签到,获得积分10
4秒前
4秒前
不帅气的小鱼完成签到,获得积分10
4秒前
刘厚麟完成签到,获得积分10
4秒前
蓝柚发布了新的文献求助10
4秒前
hihi完成签到 ,获得积分10
4秒前
5秒前
5秒前
观澜发布了新的文献求助10
6秒前
6秒前
科研通AI6应助刻苦的旺仔采纳,获得10
6秒前
tianmafei发布了新的文献求助10
7秒前
要吃虾饺吗完成签到,获得积分20
7秒前
义气凡阳发布了新的文献求助10
7秒前
鲤鱼月饼发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577