TEM1Dformer: A Novel 1-D Time Series Deep Denoising Network for TEM Signals

计算机科学 降噪 深度学习 卷积神经网络 人工智能 电子工程 噪音(视频) 变压器 人工神经网络 工程类 电压 电气工程 图像(数学)
作者
Dawei Pan,Tingye Qi,Guorui Feng,Haochen Wang,Zhicheng Zhang,Xiaoya Wei
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 414-426 被引量:1
标识
DOI:10.1109/jsen.2023.3330468
摘要

The transient electromagnetic method (TEM) is widely used in geophysical exploration tasks of minerals, goaves, and groundwater, but the received secondary induced electromotive force is susceptible to external noise interference and attenuation distortion. Deep learning has been used for transient electromagnetic signal denoising tasks and outperforms traditional algorithms. However, the existing convolutional neural network (CNN) has limitations in modeling the global time-series relationships of the data; Transformer is vulnerable to the interference of redundant information in the time-series data, and the computing power requirements are difficult to meet the needs of engineering deployment. To solve the above problems, this paper proposes a new one-dimensional time series denoising framework. This framework adopts one-dimensional convolution and Vision Transformer (ViT) encoder architecture, which reduces the computational requirements of the Transformer, retains the local perception characteristics of the convolution network and the global perception characteristics of the transformer and combines multi-task loss function and dense connection residual structure to optimize the denoising performance of the model. The TEM signal dataset is constructed by selecting multiple types of noise and power model parameters. The simulation signal test shows that compared with other typical algorithms, this work achieves the best performance in the one-dimensional sequential denoising task for transient electromagnetic. The model denoising research is carried out with transient electromagnetic field signals collected from iron ore mine in western Shanxi Province, China. The results show that the accuracy of data interpretation is effectively improved, and the validity of the proposed model is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
2秒前
5秒前
寒冷荧荧应助BBking采纳,获得10
8秒前
Hello应助起名字好难采纳,获得10
9秒前
CipherSage应助莉亚采纳,获得30
9秒前
10秒前
范月月完成签到 ,获得积分10
10秒前
婷婷应助11采纳,获得10
10秒前
10秒前
康琦琦完成签到 ,获得积分10
11秒前
月弯弯发布了新的文献求助10
11秒前
13秒前
13秒前
上官若男应助哇卡哇卡采纳,获得10
14秒前
17秒前
18秒前
纯真橘子发布了新的文献求助30
18秒前
莉亚完成签到,获得积分10
18秒前
18秒前
19秒前
壮观的涵柏完成签到 ,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
云瑾应助科研通管家采纳,获得10
20秒前
pluto应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
pluto应助科研通管家采纳,获得10
20秒前
tianzml0应助科研通管家采纳,获得10
20秒前
zhu97应助科研通管家采纳,获得20
21秒前
pluto应助科研通管家采纳,获得10
21秒前
和谐亦瑶完成签到,获得积分10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
修仙应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234