TEM1Dformer: A Novel 1-D Time Series Deep Denoising Network for TEM Signals

计算机科学 降噪 深度学习 卷积神经网络 人工智能 电子工程 噪音(视频) 变压器 人工神经网络 工程类 电压 电气工程 图像(数学)
作者
Dawei Pan,Tingye Qi,Guorui Feng,Haochen Wang,Zhicheng Zhang,Xiaoya Wei
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 414-426 被引量:7
标识
DOI:10.1109/jsen.2023.3330468
摘要

The transient electromagnetic method (TEM) is widely used in geophysical exploration tasks of minerals, goaves, and groundwater, but the received secondary induced electromotive force is susceptible to external noise interference and attenuation distortion. Deep learning has been used for transient electromagnetic signal denoising tasks and outperforms traditional algorithms. However, the existing convolutional neural network (CNN) has limitations in modeling the global time-series relationships of the data; Transformer is vulnerable to the interference of redundant information in the time-series data, and the computing power requirements are difficult to meet the needs of engineering deployment. To solve the above problems, this paper proposes a new one-dimensional time series denoising framework. This framework adopts one-dimensional convolution and Vision Transformer (ViT) encoder architecture, which reduces the computational requirements of the Transformer, retains the local perception characteristics of the convolution network and the global perception characteristics of the transformer and combines multi-task loss function and dense connection residual structure to optimize the denoising performance of the model. The TEM signal dataset is constructed by selecting multiple types of noise and power model parameters. The simulation signal test shows that compared with other typical algorithms, this work achieves the best performance in the one-dimensional sequential denoising task for transient electromagnetic. The model denoising research is carried out with transient electromagnetic field signals collected from iron ore mine in western Shanxi Province, China. The results show that the accuracy of data interpretation is effectively improved, and the validity of the proposed model is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿容完成签到,获得积分10
刚刚
木炭完成签到,获得积分10
刚刚
搜集达人应助badada采纳,获得10
1秒前
顾矜应助zdd采纳,获得10
1秒前
2秒前
林夏应助伯赏盼晴采纳,获得10
2秒前
Hugsy完成签到,获得积分10
3秒前
3秒前
沐沐完成签到,获得积分20
4秒前
zhaoyg发布了新的文献求助10
4秒前
Naomi发布了新的文献求助10
5秒前
5秒前
Bovr完成签到,获得积分20
5秒前
5秒前
5秒前
星辰大海应助友好代亦采纳,获得10
6秒前
6秒前
李健的小迷弟应助Zzziihao采纳,获得10
6秒前
6秒前
深情安青应助Alex采纳,获得10
7秒前
7秒前
7秒前
大胆以蕊完成签到,获得积分10
7秒前
田様应助young406采纳,获得10
8秒前
8秒前
Kkkkkk完成签到,获得积分10
8秒前
9秒前
absorb发布了新的文献求助10
9秒前
lingling发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
湛湛发布了新的文献求助10
10秒前
lll完成签到,获得积分10
11秒前
星星人完成签到,获得积分10
11秒前
领导范儿应助Bailey采纳,获得30
12秒前
12秒前
ZZH发布了新的文献求助10
12秒前
尚欣雨完成签到,获得积分10
12秒前
CodeCraft应助杨德帅采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791