Fusion of electronic health records and radiographic images for a multimodal deep learning prediction model of atypical femur fractures

人工智能 医学 射线照相术 卷积神经网络 深度学习 放射科 股骨骨折 机器学习 骨质疏松症 接收机工作特性 电子健康档案 股骨 医学物理学 医疗保健 计算机科学 外科 病理 内科学 经济 经济增长
作者
Jörg Schilcher,Alva Nilsson,Oliver Andlid,Anders Eklund
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107704-107704 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107704
摘要

Atypical femur fractures (AFF) represent a very rare type of fracture that can be difficult to discriminate radiologically from normal femur fractures (NFF). AFFs are associated with drugs that are administered to prevent osteoporosis-related fragility fractures, which are highly prevalent in the elderly population. Given that these fractures are rare and the radiologic changes are subtle currently only 7% of AFFs are correctly identified, which hinders adequate treatment for most patients with AFF. Deep learning models could be trained to classify automatically a fracture as AFF or NFF, thereby assisting radiologists in detecting these rare fractures. Historically, for this classification task, only imaging data have been used, using convolutional neural networks (CNN) or vision transformers applied to radiographs. However, to mimic situations in which all available data are used to arrive at a diagnosis, we adopted an approach of deep learning that is based on the integration of image data and tabular data (from electronic health records) for 159 patients with AFF and 914 patients with NFF. We hypothesized that the combinatorial data, compiled from all the radiology departments of 72 hospitals in Sweden and the Swedish National Patient Register, would improve classification accuracy, as compared to using only one modality. At the patient level, the area under the ROC curve (AUC) increased from 0.966 to 0.987 when using the integrated set of imaging data and seven pre-selected variables, as compared to only using imaging data. More importantly, the sensitivity increased from 0.796 to 0.903. We found a greater impact of data fusion when only a randomly selected subset of available images was used to make the image and tabular data more balanced for each patient. The AUC then increased from 0.949 to 0.984, and the sensitivity increased from 0.727 to 0.849. These AUC improvements are not large, mainly because of the already excellent performance of the CNN (AUC of 0.966) when only images are used. However, the improvement is clinically highly relevant considering the importance of accuracy in medical diagnostics. We expect an even greater effect when imaging data from a clinical workflow, comprising a more diverse set of diagnostic images, are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼叫554发布了新的文献求助10
1秒前
misha991应助梓沐采纳,获得20
1秒前
zhangzhangzhang完成签到 ,获得积分10
2秒前
2秒前
2秒前
biubiu完成签到,获得积分10
3秒前
王灿灿应助科研通管家采纳,获得10
5秒前
123应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
冯冯完成签到 ,获得积分10
5秒前
快乐的晓刚完成签到,获得积分10
6秒前
mhs发布了新的文献求助10
6秒前
乐乐发布了新的文献求助10
7秒前
五斤老陈醋完成签到,获得积分10
7秒前
卡乐瑞咩吹可完成签到,获得积分10
7秒前
ding应助程大程采纳,获得10
8秒前
Vintage完成签到,获得积分10
8秒前
8秒前
鸡蛋灌饼完成签到,获得积分10
8秒前
xiaojin完成签到 ,获得积分10
8秒前
还不如瞎写完成签到,获得积分10
8秒前
搞怪人杰完成签到,获得积分10
9秒前
斯文冷亦完成签到 ,获得积分10
10秒前
李加威完成签到 ,获得积分10
10秒前
菜鸡学VASP完成签到 ,获得积分10
10秒前
西瓜汁完成签到,获得积分10
11秒前
隐形曼青应助hdd采纳,获得10
11秒前
学术蝗虫完成签到,获得积分10
12秒前
ssss完成签到,获得积分10
12秒前
拾柒完成签到,获得积分10
12秒前
13秒前
呼叫554完成签到,获得积分10
13秒前
十元完成签到,获得积分10
13秒前
葡萄成熟发布了新的文献求助10
15秒前
11完成签到,获得积分10
15秒前
11发布了新的文献求助10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443