亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusion of electronic health records and radiographic images for a multimodal deep learning prediction model of atypical femur fractures

人工智能 医学 射线照相术 卷积神经网络 深度学习 放射科 股骨骨折 机器学习 骨质疏松症 接收机工作特性 电子健康档案 股骨 医学物理学 医疗保健 计算机科学 外科 病理 内科学 经济增长 经济
作者
Jörg Schilcher,Alva Nilsson,Oliver Andlid,Anders Eklund
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107704-107704 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107704
摘要

Atypical femur fractures (AFF) represent a very rare type of fracture that can be difficult to discriminate radiologically from normal femur fractures (NFF). AFFs are associated with drugs that are administered to prevent osteoporosis-related fragility fractures, which are highly prevalent in the elderly population. Given that these fractures are rare and the radiologic changes are subtle currently only 7% of AFFs are correctly identified, which hinders adequate treatment for most patients with AFF. Deep learning models could be trained to classify automatically a fracture as AFF or NFF, thereby assisting radiologists in detecting these rare fractures. Historically, for this classification task, only imaging data have been used, using convolutional neural networks (CNN) or vision transformers applied to radiographs. However, to mimic situations in which all available data are used to arrive at a diagnosis, we adopted an approach of deep learning that is based on the integration of image data and tabular data (from electronic health records) for 159 patients with AFF and 914 patients with NFF. We hypothesized that the combinatorial data, compiled from all the radiology departments of 72 hospitals in Sweden and the Swedish National Patient Register, would improve classification accuracy, as compared to using only one modality. At the patient level, the area under the ROC curve (AUC) increased from 0.966 to 0.987 when using the integrated set of imaging data and seven pre-selected variables, as compared to only using imaging data. More importantly, the sensitivity increased from 0.796 to 0.903. We found a greater impact of data fusion when only a randomly selected subset of available images was used to make the image and tabular data more balanced for each patient. The AUC then increased from 0.949 to 0.984, and the sensitivity increased from 0.727 to 0.849. These AUC improvements are not large, mainly because of the already excellent performance of the CNN (AUC of 0.966) when only images are used. However, the improvement is clinically highly relevant considering the importance of accuracy in medical diagnostics. We expect an even greater effect when imaging data from a clinical workflow, comprising a more diverse set of diagnostic images, are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨涵完成签到 ,获得积分10
刚刚
23秒前
RAIN发布了新的文献求助10
28秒前
30秒前
海绵宝宝抓水母完成签到,获得积分10
40秒前
平淡的快乐完成签到,获得积分10
47秒前
JamesPei应助平淡的快乐采纳,获得10
51秒前
在水一方应助CMY采纳,获得10
58秒前
量子星尘发布了新的文献求助10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
1分钟前
CMY发布了新的文献求助10
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
小蘑菇应助葛力采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
葛力发布了新的文献求助10
2分钟前
彩色的紫丝完成签到 ,获得积分10
2分钟前
fangyifang完成签到,获得积分10
2分钟前
xxx完成签到,获得积分20
2分钟前
2分钟前
2分钟前
xxx发布了新的文献求助20
2分钟前
Tethys完成签到 ,获得积分10
2分钟前
2分钟前
Akim应助大方研究生采纳,获得10
3分钟前
3分钟前
孙雁哝发布了新的文献求助10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
Orange应助qyn1234566采纳,获得10
3分钟前
小飞飞发布了新的文献求助10
3分钟前
3分钟前
羊白玉完成签到 ,获得积分10
3分钟前
充电宝应助wyx采纳,获得10
3分钟前
万能图书馆应助小飞飞采纳,获得10
3分钟前
暖暖完成签到,获得积分10
3分钟前
孙雁哝完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188