亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time Control of Electric Autonomous Mobility-on-Demand Systems via Graph Reinforcement Learning

强化学习 计算机科学 控制(管理) 图形 钢筋 人工智能 工程类 结构工程 理论计算机科学
作者
Aaryan Singhal,Daniele Gammelli,Justin Luke,Karthik Gopalakrishnan,Dominik Helmreich,Marco Pavone
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.05780
摘要

Operators of Electric Autonomous Mobility-on-Demand (E-AMoD) fleets need to make several real-time decisions such as matching available vehicles to ride requests, rebalancing idle vehicles to areas of high demand, and charging vehicles to ensure sufficient range. While this problem can be posed as a linear program that optimizes flows over a space-charge-time graph, the size of the resulting optimization problem does not allow for real-time implementation in realistic settings. In this work, we present the E-AMoD control problem through the lens of reinforcement learning and propose a graph network-based framework to achieve drastically improved scalability and superior performance over heuristics. Specifically, we adopt a bi-level formulation where we (1) leverage a graph network-based RL agent to specify a desired next state in the space-charge graph, and (2) solve more tractable linear programs to best achieve the desired state while ensuring feasibility. Experiments using real-world data from San Francisco and New York City show that our approach achieves up to 89% of the profits of the theoretically-optimal solution while achieving more than a 100x speedup in computational time. We further highlight promising zero-shot transfer capabilities of our learned policy on tasks such as inter-city generalization and service area expansion, thus showing the utility, scalability, and flexibility of our framework. Finally, our approach outperforms the best domain-specific heuristics with comparable runtimes, with an increase in profits by up to 3.2x.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星希发布了新的文献求助10
3秒前
万能图书馆应助jiayou采纳,获得10
4秒前
王啦啦发布了新的文献求助30
5秒前
Jasper应助wxyllxx采纳,获得10
11秒前
daishuheng完成签到 ,获得积分10
11秒前
vivi完成签到,获得积分10
13秒前
酷波er应助粒粒采纳,获得10
13秒前
17秒前
21秒前
23秒前
25秒前
27秒前
稚萦发布了新的文献求助50
28秒前
29秒前
Leslie应助wxyllxx采纳,获得10
30秒前
lei发布了新的文献求助10
31秒前
虞头星星发布了新的文献求助10
35秒前
脑洞疼应助稳重筝采纳,获得10
37秒前
Leslie应助wxyllxx采纳,获得10
46秒前
科目三应助王啦啦采纳,获得10
47秒前
47秒前
钱邦国完成签到 ,获得积分10
48秒前
lei关注了科研通微信公众号
50秒前
50秒前
hss完成签到 ,获得积分10
59秒前
Leslie应助wxyllxx采纳,获得10
1分钟前
1分钟前
1分钟前
虚幻幻嫣完成签到 ,获得积分10
1分钟前
星辰大海应助Vaibhav采纳,获得10
1分钟前
领导范儿应助Pretstar采纳,获得10
1分钟前
1分钟前
Leslie应助wxyllxx采纳,获得10
1分钟前
慕青应助虞头星星采纳,获得10
1分钟前
1分钟前
1分钟前
Annnnnnnnnn完成签到,获得积分10
1分钟前
Panda_Zhou完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566546
求助须知:如何正确求助?哪些是违规求助? 3139282
关于积分的说明 9431374
捐赠科研通 2840146
什么是DOI,文献DOI怎么找? 1560950
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717816