Extrapolation of Digital Soil Mapping Approaches for Soil Organic Carbon Stock Predictions in an Afromontane Environment

土壤碳 环境科学 数字土壤制图 数字高程模型 固碳 地形 水文学(农业) 土壤科学 土壤图 遥感 地理 生态学 土壤水分 地质学 地图学 岩土工程 二氧化碳 生物
作者
Jaco Kotzé,Johan van Tol
出处
期刊:Land [MDPI AG]
卷期号:12 (3): 520-520 被引量:1
标识
DOI:10.3390/land12030520
摘要

Soil scientists can aid in an essential part of ecological conservation and rehabilitation by quantifying soil properties, such as soil organic carbon (SOC), and is stock (SOCs) SOC is crucial for providing ecosystem services, and, through effective C-sequestration, the effects of climate change can be mitigated. In remote mountainous areas with complex terrain, such as the northern Maloti-Drakensberg in South Africa and Lesotho, direct quantification of stocks or even obtaining sufficient data to construct predictive Digital Soil Mapping (DSM) models is a tedious and expensive task. Extrapolation of DSM model and algorithms from a relatively accessible area to remote areas could overcome these challenges. The aim of this study was to determine if calibrated DSM models for one headwater catchment (Tugela) can be extrapolated without re-training to other catchments in the Maloti-Drakensberg region with acceptable accuracy. The selected models were extrapolated to four different headwater catchments, which included three near the Motete River (M1, M2, and M3) in Lesotho and one in the Vemvane catchment adjacent to the Tugela. Predictions were compared to measured stocks from the soil sampling sites (n = 98) in the various catchments. Results showed that based on the mean results from Universal Kriging (R2 = 0.66, NRMSE = 0.200, and ρc = 0.72), least absolute shrinkage and selection operator or LASSO (R2 = 0.67, NRMSE = 0.191, and ρc = 0.73) and Regression Kriging with cubist models (R2 = 0.61, NRMSE = 0.184, and ρc = 0.65) had the most satisfactory outcome, whereas the soil-land inference models (SoLIM) struggled to predict stocks accurately. Models in the Vemvane performed the worst of all, showing that that close proximity does not necessarily equal good similarity. The study concluded that a model calibrated in one catchment can be extrapolated. However, the catchment selected for calibration should be a good representation of the greater area, otherwise a model might over- or under-predict SOCs. Successfully extrapolating models to remote areas will allow scientists to make predictions to aid in rehabilitation and conservation efforts of vulnerable areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jj发布了新的文献求助20
3秒前
3秒前
4秒前
不配.应助輝23采纳,获得20
4秒前
陆陆大人完成签到,获得积分10
4秒前
毛毛发布了新的文献求助10
4秒前
4秒前
yyyalles发布了新的文献求助10
5秒前
玉米完成签到,获得积分10
5秒前
大模型应助zxvcbnm采纳,获得10
5秒前
烟花应助xiu_ye采纳,获得10
6秒前
萍123发布了新的文献求助10
7秒前
我是老大应助greatchelsea采纳,获得10
7秒前
英俊的铭应助jgpiao采纳,获得10
10秒前
11秒前
nimo完成签到 ,获得积分10
12秒前
atterct完成签到,获得积分10
13秒前
14秒前
15秒前
研友_8YoVDn完成签到,获得积分10
15秒前
atterct发布了新的文献求助10
15秒前
yang完成签到,获得积分10
16秒前
ding应助踏实的书包采纳,获得10
16秒前
orixero应助萍123采纳,获得30
18秒前
Shine发布了新的文献求助10
18秒前
18秒前
Caspase发布了新的文献求助10
19秒前
19秒前
Ali完成签到 ,获得积分10
20秒前
20秒前
21秒前
灵巧的一笑完成签到,获得积分10
21秒前
平常若南完成签到,获得积分10
22秒前
sameen完成签到,获得积分10
22秒前
塔塔发布了新的文献求助10
23秒前
23秒前
ABU发布了新的文献求助10
23秒前
科研打工人完成签到,获得积分10
24秒前
认真科研完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847