Extrapolation of Digital Soil Mapping Approaches for Soil Organic Carbon Stock Predictions in an Afromontane Environment

土壤碳 环境科学 数字土壤制图 数字高程模型 固碳 地形 水文学(农业) 土壤科学 土壤图 遥感 地理 生态学 土壤水分 地质学 地图学 岩土工程 二氧化碳 生物
作者
Jaco Kotzé,Johan van Tol
出处
期刊:Land [MDPI AG]
卷期号:12 (3): 520-520 被引量:1
标识
DOI:10.3390/land12030520
摘要

Soil scientists can aid in an essential part of ecological conservation and rehabilitation by quantifying soil properties, such as soil organic carbon (SOC), and is stock (SOCs) SOC is crucial for providing ecosystem services, and, through effective C-sequestration, the effects of climate change can be mitigated. In remote mountainous areas with complex terrain, such as the northern Maloti-Drakensberg in South Africa and Lesotho, direct quantification of stocks or even obtaining sufficient data to construct predictive Digital Soil Mapping (DSM) models is a tedious and expensive task. Extrapolation of DSM model and algorithms from a relatively accessible area to remote areas could overcome these challenges. The aim of this study was to determine if calibrated DSM models for one headwater catchment (Tugela) can be extrapolated without re-training to other catchments in the Maloti-Drakensberg region with acceptable accuracy. The selected models were extrapolated to four different headwater catchments, which included three near the Motete River (M1, M2, and M3) in Lesotho and one in the Vemvane catchment adjacent to the Tugela. Predictions were compared to measured stocks from the soil sampling sites (n = 98) in the various catchments. Results showed that based on the mean results from Universal Kriging (R2 = 0.66, NRMSE = 0.200, and ρc = 0.72), least absolute shrinkage and selection operator or LASSO (R2 = 0.67, NRMSE = 0.191, and ρc = 0.73) and Regression Kriging with cubist models (R2 = 0.61, NRMSE = 0.184, and ρc = 0.65) had the most satisfactory outcome, whereas the soil-land inference models (SoLIM) struggled to predict stocks accurately. Models in the Vemvane performed the worst of all, showing that that close proximity does not necessarily equal good similarity. The study concluded that a model calibrated in one catchment can be extrapolated. However, the catchment selected for calibration should be a good representation of the greater area, otherwise a model might over- or under-predict SOCs. Successfully extrapolating models to remote areas will allow scientists to make predictions to aid in rehabilitation and conservation efforts of vulnerable areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
戴苏完成签到,获得积分10
1秒前
Carol发布了新的文献求助10
2秒前
CA发布了新的文献求助10
3秒前
3秒前
肥鹏发布了新的文献求助10
4秒前
5秒前
戴苏发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
8秒前
10秒前
An发布了新的文献求助10
10秒前
善学以致用应助qqqq采纳,获得10
11秒前
11秒前
李昂完成签到,获得积分10
11秒前
搜集达人应助Yewei_Xiao采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
麦克疯发布了新的文献求助10
12秒前
14秒前
刘雅轩发布了新的文献求助10
14秒前
浮游应助冷酷的柜门采纳,获得10
16秒前
李健应助懒羊羊采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6应助GG采纳,获得10
19秒前
Owen应助微微采纳,获得10
19秒前
无花果应助HHHHH采纳,获得10
20秒前
慕青应助HHHHH采纳,获得10
20秒前
李爱国应助HHHHH采纳,获得10
20秒前
彭于晏应助HHHHH采纳,获得10
20秒前
CipherSage应助HHHHH采纳,获得10
20秒前
20秒前
22秒前
23秒前
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655533
求助须知:如何正确求助?哪些是违规求助? 4799601
关于积分的说明 15073245
捐赠科研通 4813905
什么是DOI,文献DOI怎么找? 2575413
邀请新用户注册赠送积分活动 1530797
关于科研通互助平台的介绍 1489468