Extrapolation of Digital Soil Mapping Approaches for Soil Organic Carbon Stock Predictions in an Afromontane Environment

土壤碳 环境科学 数字土壤制图 数字高程模型 固碳 地形 水文学(农业) 土壤科学 土壤图 遥感 地理 生态学 土壤水分 地质学 地图学 岩土工程 二氧化碳 生物
作者
Jaco Kotzé,Johan van Tol
出处
期刊:Land [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 520-520 被引量:1
标识
DOI:10.3390/land12030520
摘要

Soil scientists can aid in an essential part of ecological conservation and rehabilitation by quantifying soil properties, such as soil organic carbon (SOC), and is stock (SOCs) SOC is crucial for providing ecosystem services, and, through effective C-sequestration, the effects of climate change can be mitigated. In remote mountainous areas with complex terrain, such as the northern Maloti-Drakensberg in South Africa and Lesotho, direct quantification of stocks or even obtaining sufficient data to construct predictive Digital Soil Mapping (DSM) models is a tedious and expensive task. Extrapolation of DSM model and algorithms from a relatively accessible area to remote areas could overcome these challenges. The aim of this study was to determine if calibrated DSM models for one headwater catchment (Tugela) can be extrapolated without re-training to other catchments in the Maloti-Drakensberg region with acceptable accuracy. The selected models were extrapolated to four different headwater catchments, which included three near the Motete River (M1, M2, and M3) in Lesotho and one in the Vemvane catchment adjacent to the Tugela. Predictions were compared to measured stocks from the soil sampling sites (n = 98) in the various catchments. Results showed that based on the mean results from Universal Kriging (R2 = 0.66, NRMSE = 0.200, and ρc = 0.72), least absolute shrinkage and selection operator or LASSO (R2 = 0.67, NRMSE = 0.191, and ρc = 0.73) and Regression Kriging with cubist models (R2 = 0.61, NRMSE = 0.184, and ρc = 0.65) had the most satisfactory outcome, whereas the soil-land inference models (SoLIM) struggled to predict stocks accurately. Models in the Vemvane performed the worst of all, showing that that close proximity does not necessarily equal good similarity. The study concluded that a model calibrated in one catchment can be extrapolated. However, the catchment selected for calibration should be a good representation of the greater area, otherwise a model might over- or under-predict SOCs. Successfully extrapolating models to remote areas will allow scientists to make predictions to aid in rehabilitation and conservation efforts of vulnerable areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shyotion完成签到,获得积分10
1秒前
3秒前
在下风爵完成签到,获得积分10
4秒前
愛迪发布了新的文献求助10
4秒前
4秒前
4秒前
欧阳正义发布了新的文献求助10
5秒前
传奇3应助跳跃的语柔采纳,获得10
5秒前
张雷应助容荣采纳,获得20
7秒前
与可完成签到,获得积分10
8秒前
圆圆发布了新的文献求助10
10秒前
桐桐应助mzc采纳,获得10
11秒前
眼睛大莆发布了新的文献求助10
12秒前
123完成签到 ,获得积分10
12秒前
2224536发布了新的文献求助10
13秒前
hh完成签到 ,获得积分10
15秒前
柯一一应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
16秒前
OKOK应助科研通管家采纳,获得20
16秒前
16秒前
16秒前
柯一一应助科研通管家采纳,获得10
16秒前
17秒前
18秒前
drfwjuikesv完成签到,获得积分10
19秒前
20秒前
宋阳完成签到,获得积分10
20秒前
20秒前
21秒前
清脆南蕾发布了新的文献求助10
22秒前
bkagyin应助杨秀玲采纳,获得10
22秒前
23秒前
爱听歌的寄云完成签到 ,获得积分10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498