光催化
材料科学
锂(药物)
熔盐
三元运算
微观结构
吸附
氧化还原
氧化物
化学工程
纳米技术
冶金
化学
复合材料
催化作用
计算机科学
医学
物理化学
生物化学
工程类
内分泌学
程序设计语言
作者
Di Zu,Yiran Ying,Zhifang Xu,Gao Chen,Liqi Bai,Syed M. Ahmed,Zezhou Lin,Ye Zhu,Ahmed Mortuza Saleque,Sixuan She,Molly Meng‐Jung Li,Nahian Al Subri Ivan,Hui Wu,Yuen Hong Tsang,Haitao Huang
标识
DOI:10.1016/j.apcatb.2023.122494
摘要
The efficiency of photoabsorption, photo-generated charge separation, and surface redox reaction determine the overall efficiency of photocatalysts. Therefore, exploring ways to simultaneously optimize the parameters is key to improving the photocatalytic performance. Herein, a novel low-temperature ternary molten salt-lithium reduction method is designed to create controllable oxygen vacancies (Ovs) as well as to manipulate the surface microstructure of the classic photocatalyst TiO2. The optimized TiO2 exhibits a 10-fold increase in the photocatalytic RhB breakdown rate and H2 generation quantity compared to pristine TiO2. The dual surface defects result in synergistic effects: i) Ovs lower band gap, enhance the charge separation efficiency as capture centers, and facilitate hydrogen adsorption; ii) the enlarged surface area enhances light-harvesting and provides more active sites. This research proposes a novel strategy for manipulating surface defects in a controlled manner and highlights the synergistic optimization of the thermodynamical and kinetical parameters to promote the photocatalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI