Image De-Blurring and De-Noising by Using a Wiener Filter for Different Types of Noise

维纳滤波器 人工智能 计算机视觉 数学 维纳反褶积 椒盐噪音 高斯噪声 噪音(视频) 高斯模糊 散斑噪声 图像复原 滤波器(信号处理) 中值滤波器 失真(音乐) 图像噪声 计算机科学 图像(数学) 图像处理 反褶积 算法 盲反褶积 计算机网络 放大器 带宽(计算)
作者
Daniya Amer Jassim,Sabbar Insaif Jassim,Nazar Jabbar Alhayani
出处
期刊:Lecture notes in networks and systems 卷期号:: 451-460 被引量:3
标识
DOI:10.1007/978-3-031-25274-7_37
摘要

There are many factors that lead to photographic image deterioration such as motion blur and geometric distortion. Image blurs results from the movement of the camera during the time the photo is being taken or the movement of the object to be photographed. Geometric distortion results from the use of a large angle lens. In this paper, a method for image de-blurring and image de-noising is presented by using an effective linear approach which is the wiener filtering. Initially, two images of peppers and a cameraman were used as the original image, then blurred and four different forms of noise (Gaussian, Salt & Peppers, Speckle and Poisson) were applied to the original image to perform noisy blurring image. The image is then removed from blurring and noise by using the Wiener filter. Wiener filters are designed and analyzed in this paper by using m-file MATLAB program. The results show that the wiener filter produces superior results since all of the blur is roughly eliminated. Furthermore, the results show that the wiener filter after de-noising performs better image quality for blur images and blur images with Poisson noise than the Wiener Filter after de-noising for images with Gaussian noise, Speckle noise, and Salt & Pepper noise respectively. The image quality parameters, PSNR and RMSE, provide greater performance for low SNR. The Tables show that the PSNR values are increasing while the RMSE values are decreasing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cx330完成签到 ,获得积分10
刚刚
1秒前
1秒前
白石杏完成签到,获得积分10
1秒前
1秒前
典雅以南完成签到,获得积分10
1秒前
2秒前
朴素绿真完成签到,获得积分10
2秒前
2秒前
超级洋葱发布了新的文献求助10
2秒前
小二郎应助自由的筝采纳,获得10
2秒前
所所应助桃子牛肉酱采纳,获得10
3秒前
地球人完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
codwest发布了新的文献求助10
4秒前
HX3275发布了新的文献求助10
4秒前
HUI完成签到,获得积分10
4秒前
田様应助rose123456采纳,获得10
4秒前
fang发布了新的文献求助10
4秒前
共享精神应助张佳宁采纳,获得10
4秒前
慕雪完成签到,获得积分10
4秒前
5秒前
Cx330关注了科研通微信公众号
5秒前
Lee关闭了Lee文献求助
5秒前
rh发布了新的文献求助10
5秒前
小青椒应助Lipei采纳,获得80
5秒前
Fyl发布了新的文献求助10
6秒前
赘婿应助YYH采纳,获得10
6秒前
小马甲应助超帅的薯片采纳,获得10
6秒前
6秒前
平淡远航发布了新的文献求助10
7秒前
刘泉发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125