Topologically Frustrated Graphene Antidot Lattice Semiconductors with Room-Temperature Magnetism

磁性 反铁磁性 自旋电子学 石墨烯 凝聚态物理 铁磁性 材料科学 磁性半导体 半导体 挫折感 密度泛函理论 纳米技术 物理 量子力学 光电子学
作者
Yu Pan,Haifeng Lv,Xiaojun Wu
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (6): 3276-3284 被引量:1
标识
DOI:10.1021/acs.jpcc.2c08075
摘要

Realizing graphene spintronics is intriguing due to the weak spin–orbital coupling; however, developing intrinsic room-temperature magnetic semiconductors in graphene is still a great challenge. Graphene antidot lattices (GALs), as a type of regular vacancy graphene, exhibit topology-dependent magnetism and offer an ideal platform to achieve room-temperature magnetic semiconductors. Recently, on-surface-synthesized open-shell [n]triangulene polymers as topologically frustrated graphene nanoflakes (GNFs) are the new building blocks to construct topologically frustrated GALs with robust magnetism. Herein, on the basis of the density functional theory calculations, we report seven magnetic GAL semiconductors by assembling two types of open-shell GNFs with topological frustration, that is, isomeric π-extended heptauthrene (cis triangulene dimer) and heptazethrene (trans triangulene dimer). Our results demonstrate that topologically frustrated GALs are semiconductors with either bipolar ferromagnetism or antiferromagnetism, inheriting the topologically frustrated magnetism from their building blocks. In particular, three ferromagnetic and two antiferromagnetic GALs exhibit above room-temperature magnetic order with their Curie or Néel temperatures varying from 507 to 527 or 366 to 391 K, respectively. This study provides a feasible route to obtain topologically frustrated GAL semiconductors with the above room-temperature magnetism from open-shell GNFs for graphene spintronics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助北海采纳,获得10
1秒前
1秒前
奋斗水香发布了新的文献求助10
1秒前
淡淡智宸发布了新的文献求助10
1秒前
田様应助脉动采纳,获得10
1秒前
3秒前
vinity完成签到,获得积分10
3秒前
4秒前
dhjic完成签到 ,获得积分10
5秒前
在水一方应助汝桢采纳,获得10
5秒前
6秒前
6秒前
ldz完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
8秒前
9秒前
落后的惜梦完成签到,获得积分10
9秒前
10秒前
小蘑菇应助hyw采纳,获得10
10秒前
gggggggbao发布了新的文献求助10
10秒前
燕麦大王发布了新的文献求助10
10秒前
11秒前
无花果应助hehe采纳,获得30
11秒前
ldz发布了新的文献求助10
12秒前
阿花阿花发布了新的文献求助10
12秒前
汝桢完成签到,获得积分10
13秒前
马开峰发布了新的文献求助10
13秒前
13秒前
14秒前
胡雨轩发布了新的文献求助10
14秒前
月亮发布了新的文献求助10
14秒前
leyi完成签到,获得积分20
14秒前
14秒前
14秒前
852应助白河采纳,获得30
15秒前
怡然诗霜完成签到,获得积分10
15秒前
汝桢发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968781
求助须知:如何正确求助?哪些是违规求助? 4225990
关于积分的说明 13161443
捐赠科研通 4013136
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123362