作者
Yi Lin,Xingjun Chen,Jingjing Li,Lei He,Yaru Yang,Fei Zhong,Ming-Hui He,Yifeng Shen,Bo Tang,Xu Zhang,Zhu Zeng
摘要
Sophora flavescens Aiton, was a crucial source of Traditional Chinese Medicine (TCM) that has benefited human health for hundreds of years. Alkaloids and flavonoids were the major bioactive constituents from S. flavescens, which had been widely used for liver disease treatment in China. However, the liver-protective components of flavonoids from S. flavescens and their mechanism of action were not clear. This work aimed to evaluate the in vitro hepatoprotective activities of 35 flavonoids from S. flavescens and screen active compounds. Furthermore, it was conducted to demonstrate the hepatoprotective effects of a new active compound (kurarinol A, 1) was isolated by authors and the ethyl acetate (EtOAc) extract form S. flavescens against carbon tetrachloride (CCl4)-induced hepatic injury in Kunming (KM) mice, meanwhile revealed the potential mechanism. The 35 flavonoids from S. flavescens were co-incubated with HepG2 cells and treated with 0.35% CCl4 for 6 h cell viability was measured by (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. Then, in vivo animal experiments, the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the serum were analyzed, the degree of hepatic injury was examined using hematoxylin-eosin (H&E) staining, the mRNA expression of Superoxide Dismutase 2 (SOD2), Nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), Interleukin 6 (IL-6), Tumor Necrosis Factor-α (TNF-α), interleukin-1β (IL-1β), and the protein levels of nuclear factor-kappa B p65/p-p65 (NF-κB p65/p-p65), toll-like receptor 2 (TLR2), IL-1β and cyclooxygenase-2 (COX2) in hepatic tissues were detected. The lavandulyl flavonoid (kurarinol A, 1) and the EtOAc extract from S. flavescens showed protective effects on CCl4-injured HepG2 cells, increasing cell viability from 24.5% to 61.3% and 91.8%, respectively. What’s more, we found that treatment with kurarinol A (1) and the EtOAc extract lead to a significant reduction in hepatotoxicity in response to acute CCl4 exposure. Compared with the model group, experimental results exhibited kurarinol A (10 mg/kg, i.p.) and the EtOAc extract (300 mg/kg, i.p.) could decrease the levels of AST, ALT, ALP and tissue damage. Further mechanistic investigations revealed that up-regulated the mRNA expression of SOD2, Nrf2, OH-1 and down-regulated the IL-1β in liver tissues, respectively. Additionally, Western blot analyses elucidated that inhibition of IL-1β, TLR2, COX-2, NF-κB (p65/p-p65) via TLR2/NF-κB signaling pathway by kurarinol A and the EtOAc extract contribute to its hepatoprotective activity. These findings demonstrated that the novel compound (kurarinol A, 1) possessed notable hepatoprotective activity against CCl4. It was confirmed that kurarinol A had a certain effect on mice with liver damage induced by CCl4, and its mechanism could be include inhibiting inflammation and reducing of oxidative stress reaction by regulating expression of related genes and proteins. Thus, kurarinol A could as a novel active agent that contributes to the hepatoprotective activity of S. flavescens for the treatment of live injury.