A diagnostic framework with a novel simulation data augmentation method for rail damages based on transfer learning

学习迁移 计算机科学 卷积神经网络 有限元法 断层(地质) 人工智能 深度学习 机器学习 工程类 结构工程 地质学 地震学
作者
Jingsong Xie,Zhibin Guo,Tiantian Wang,Jinsong Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (5): 3437-3450 被引量:11
标识
DOI:10.1177/14759217221149129
摘要

The ultrasonic guide wave (UGW) has good application prospects in steel rail damage diagnosis, but the features of the rail damage implied in the UGW are complex. Deep learning enables an end-to-end approach to fault diagnosis. Nevertheless, a large amount of diversity data is needed for training, whereas the ultrasonic wave guide signals of simulation and repeated experiments lack diversity. Therefore, in this paper, a diagnostic framework based on simulation and transfer learning for rail damage is developed to tackle the problems mentioned above. The proposed framework is based on deep learning with a simulation pretraining strategy to build convolutional neural network (CNN) models through parameter fine-tuning for damage diagnosis. Specifically, for the problem that the simulation data lacks diversity, a damage mechanism-based data diversity augmentation method is proposed; this obtains the diagnostic high-value simulation data including supporting features, and expanded the diversity of the simulation data. Adopting the proposed method of data augmentation and transfer learning (TL), a diagnostic model for rail damage utilizing augmented UGW signals is constructed. The finite element simulation data of UGW with damages at different locations and depths of rails are augmented to achieve the pretraining of CNN models, and the model transfer is performed with the experimental data of rails. Ultimately, through comparative studies it can be concluded that (1) The TL diagnostic framework makes full use of the finite element simulation data to realize the model pretraining. (2) The proposed data augmentation method realizes the diversity expansion of simulation data containing supporting features and ensures the efficient application of simulation data in model pretraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc发布了新的文献求助10
刚刚
2秒前
3秒前
4秒前
4秒前
Star1983发布了新的文献求助10
8秒前
8秒前
坚定馒头发布了新的文献求助10
8秒前
项绝义发布了新的文献求助200
9秒前
Supreme发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
14秒前
14秒前
16秒前
青柠发布了新的文献求助10
16秒前
nannan发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
TKTK发布了新的文献求助30
18秒前
Stroeve发布了新的文献求助20
19秒前
23秒前
24秒前
25秒前
27秒前
lelelele发布了新的文献求助10
27秒前
28秒前
ZZZ发布了新的文献求助20
28秒前
爱科研发布了新的文献求助50
28秒前
Ava应助机灵的胡萝卜采纳,获得10
28秒前
258369发布了新的文献求助10
30秒前
cst发布了新的文献求助10
30秒前
钱宇成发布了新的文献求助10
30秒前
Ava应助美满的砖头采纳,获得10
32秒前
悄悄发布了新的文献求助10
32秒前
32秒前
miaojuly发布了新的文献求助10
33秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035