学习迁移
计算机科学
卷积神经网络
有限元法
断层(地质)
人工智能
深度学习
机器学习
工程类
结构工程
地质学
地震学
作者
Jingsong Xie,Zhibin Guo,Tiantian Wang,Jinsong Yang
标识
DOI:10.1177/14759217221149129
摘要
The ultrasonic guide wave (UGW) has good application prospects in steel rail damage diagnosis, but the features of the rail damage implied in the UGW are complex. Deep learning enables an end-to-end approach to fault diagnosis. Nevertheless, a large amount of diversity data is needed for training, whereas the ultrasonic wave guide signals of simulation and repeated experiments lack diversity. Therefore, in this paper, a diagnostic framework based on simulation and transfer learning for rail damage is developed to tackle the problems mentioned above. The proposed framework is based on deep learning with a simulation pretraining strategy to build convolutional neural network (CNN) models through parameter fine-tuning for damage diagnosis. Specifically, for the problem that the simulation data lacks diversity, a damage mechanism-based data diversity augmentation method is proposed; this obtains the diagnostic high-value simulation data including supporting features, and expanded the diversity of the simulation data. Adopting the proposed method of data augmentation and transfer learning (TL), a diagnostic model for rail damage utilizing augmented UGW signals is constructed. The finite element simulation data of UGW with damages at different locations and depths of rails are augmented to achieve the pretraining of CNN models, and the model transfer is performed with the experimental data of rails. Ultimately, through comparative studies it can be concluded that (1) The TL diagnostic framework makes full use of the finite element simulation data to realize the model pretraining. (2) The proposed data augmentation method realizes the diversity expansion of simulation data containing supporting features and ensures the efficient application of simulation data in model pretraining.
科研通智能强力驱动
Strongly Powered by AbleSci AI