A diagnostic framework with a novel simulation data augmentation method for rail damages based on transfer learning

学习迁移 计算机科学 卷积神经网络 有限元法 断层(地质) 人工智能 深度学习 机器学习 工程类 结构工程 地质学 地震学
作者
Jingsong Xie,Zhibin Guo,Tiantian Wang,Jinsong Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (5): 3437-3450 被引量:11
标识
DOI:10.1177/14759217221149129
摘要

The ultrasonic guide wave (UGW) has good application prospects in steel rail damage diagnosis, but the features of the rail damage implied in the UGW are complex. Deep learning enables an end-to-end approach to fault diagnosis. Nevertheless, a large amount of diversity data is needed for training, whereas the ultrasonic wave guide signals of simulation and repeated experiments lack diversity. Therefore, in this paper, a diagnostic framework based on simulation and transfer learning for rail damage is developed to tackle the problems mentioned above. The proposed framework is based on deep learning with a simulation pretraining strategy to build convolutional neural network (CNN) models through parameter fine-tuning for damage diagnosis. Specifically, for the problem that the simulation data lacks diversity, a damage mechanism-based data diversity augmentation method is proposed; this obtains the diagnostic high-value simulation data including supporting features, and expanded the diversity of the simulation data. Adopting the proposed method of data augmentation and transfer learning (TL), a diagnostic model for rail damage utilizing augmented UGW signals is constructed. The finite element simulation data of UGW with damages at different locations and depths of rails are augmented to achieve the pretraining of CNN models, and the model transfer is performed with the experimental data of rails. Ultimately, through comparative studies it can be concluded that (1) The TL diagnostic framework makes full use of the finite element simulation data to realize the model pretraining. (2) The proposed data augmentation method realizes the diversity expansion of simulation data containing supporting features and ensures the efficient application of simulation data in model pretraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
略略略完成签到,获得积分10
刚刚
西子阳完成签到,获得积分10
刚刚
wwz应助xch采纳,获得10
1秒前
善学以致用应助xch采纳,获得10
1秒前
ZHANG完成签到,获得积分10
2秒前
nan完成签到,获得积分10
4秒前
vippp完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
可靠的安寒完成签到,获得积分10
6秒前
花花完成签到,获得积分10
7秒前
冷傲的太英完成签到 ,获得积分10
7秒前
痴情的飞绿完成签到 ,获得积分10
7秒前
soar完成签到 ,获得积分10
9秒前
小泓完成签到,获得积分10
9秒前
1111关注了科研通微信公众号
9秒前
xch完成签到,获得积分10
10秒前
MaYi完成签到,获得积分10
11秒前
myron完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助50
12秒前
科研三轮车完成签到,获得积分10
13秒前
沉静胜完成签到,获得积分10
14秒前
Kinn完成签到,获得积分10
16秒前
清风徐来完成签到,获得积分10
16秒前
传奇3应助爱微笑的树懒采纳,获得10
16秒前
一只蓉馍馍完成签到,获得积分10
16秒前
自然的哈密瓜完成签到,获得积分10
17秒前
666999完成签到,获得积分10
17秒前
蒋磊完成签到 ,获得积分10
17秒前
mumuaidafu完成签到 ,获得积分10
18秒前
1111发布了新的文献求助10
18秒前
yu完成签到,获得积分10
19秒前
gzmejiji完成签到 ,获得积分10
19秒前
13击完成签到,获得积分10
20秒前
hhl完成签到,获得积分10
20秒前
完美世界应助今天他采纳,获得10
21秒前
22秒前
kangkang发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365