A diagnostic framework with a novel simulation data augmentation method for rail damages based on transfer learning

学习迁移 计算机科学 卷积神经网络 有限元法 断层(地质) 人工智能 深度学习 机器学习 工程类 结构工程 地质学 地震学
作者
Jingsong Xie,Zhibin Guo,Tiantian Wang,Jinsong Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (5): 3437-3450 被引量:11
标识
DOI:10.1177/14759217221149129
摘要

The ultrasonic guide wave (UGW) has good application prospects in steel rail damage diagnosis, but the features of the rail damage implied in the UGW are complex. Deep learning enables an end-to-end approach to fault diagnosis. Nevertheless, a large amount of diversity data is needed for training, whereas the ultrasonic wave guide signals of simulation and repeated experiments lack diversity. Therefore, in this paper, a diagnostic framework based on simulation and transfer learning for rail damage is developed to tackle the problems mentioned above. The proposed framework is based on deep learning with a simulation pretraining strategy to build convolutional neural network (CNN) models through parameter fine-tuning for damage diagnosis. Specifically, for the problem that the simulation data lacks diversity, a damage mechanism-based data diversity augmentation method is proposed; this obtains the diagnostic high-value simulation data including supporting features, and expanded the diversity of the simulation data. Adopting the proposed method of data augmentation and transfer learning (TL), a diagnostic model for rail damage utilizing augmented UGW signals is constructed. The finite element simulation data of UGW with damages at different locations and depths of rails are augmented to achieve the pretraining of CNN models, and the model transfer is performed with the experimental data of rails. Ultimately, through comparative studies it can be concluded that (1) The TL diagnostic framework makes full use of the finite element simulation data to realize the model pretraining. (2) The proposed data augmentation method realizes the diversity expansion of simulation data containing supporting features and ensures the efficient application of simulation data in model pretraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Running发布了新的文献求助10
刚刚
可爱的函函应助叉烧酱采纳,获得10
刚刚
可靠的如之完成签到,获得积分10
1秒前
脑洞疼应助嘻嘻采纳,获得10
1秒前
科研通AI6应助xxx采纳,获得10
1秒前
谷提发布了新的文献求助10
1秒前
1秒前
2秒前
富裕发布了新的文献求助10
2秒前
2秒前
Jasper应助WL采纳,获得10
2秒前
俭朴舞仙完成签到,获得积分10
3秒前
跳跃的滑板完成签到,获得积分10
3秒前
Grace完成签到 ,获得积分10
3秒前
爆米花应助lilac采纳,获得10
4秒前
AL完成签到,获得积分10
4秒前
SciGPT应助YHT采纳,获得10
4秒前
搬砖发布了新的文献求助30
4秒前
5秒前
科研通AI6应助Andrea采纳,获得10
5秒前
遐迩发布了新的文献求助10
5秒前
风清扬发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
思源应助派大星采纳,获得10
5秒前
酷波er应助666JACS采纳,获得10
6秒前
6秒前
向沛山完成签到 ,获得积分20
7秒前
沈彬彬发布了新的文献求助10
7秒前
朴实浩宇完成签到 ,获得积分10
7秒前
7秒前
一念初见发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988550
求助须知:如何正确求助?哪些是违规求助? 4237967
关于积分的说明 13201204
捐赠科研通 4031812
什么是DOI,文献DOI怎么找? 2205890
邀请新用户注册赠送积分活动 1217227
关于科研通互助平台的介绍 1135383