GlobalFlowNet: Video Stabilization using Deep Distilled Global Motion Estimates

光流 计算机科学 平滑的 仿射变换 图像稳定 计算机视觉 人工智能 运动估计 运动场 运动补偿 单应性 数学 图像(数学) 射影空间 统计 投射试验 纯数学
作者
Jerin Geo,Devansh Jain,Ajit Rajwade
标识
DOI:10.1109/wacv56688.2023.00505
摘要

Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as GlobalFlowNet. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained GlobalFlowNet, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. Additionally, we present a new measure for evaluation of video stabilization based on the flow generated by GlobalFlowNet and argue that it is based on a more general motion model in contrast to the affine motion model on which most existing measures are based. The source code is publicly available at https://github.com/GlobalFlowNet/GlobalFlowNet

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
铠甲勇士完成签到,获得积分20
刚刚
刚刚
个性的夜柳完成签到,获得积分10
刚刚
刚刚
李健应助留胡子的香露采纳,获得10
1秒前
2秒前
2秒前
鄂枷旭完成签到,获得积分10
2秒前
在水一方应助咕噜咕噜采纳,获得10
3秒前
3秒前
3秒前
闪闪凝冬完成签到,获得积分10
3秒前
今后应助FLZLC采纳,获得10
4秒前
4秒前
popowannaslp发布了新的文献求助10
4秒前
科研大佬完成签到,获得积分10
4秒前
fpneal发布了新的文献求助10
5秒前
爆米花应助星辰采纳,获得10
5秒前
5秒前
5秒前
米娅完成签到,获得积分10
5秒前
5秒前
123xxy完成签到,获得积分10
5秒前
铠甲勇士发布了新的文献求助10
5秒前
BeSideWorld发布了新的文献求助10
5秒前
搜集达人应助任性的尔容采纳,获得10
6秒前
ayingjiang发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
SciGPT应助方法采纳,获得10
7秒前
LLL发布了新的文献求助10
7秒前
7秒前
ruen发布了新的文献求助30
8秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
8秒前
霸王宝宝蛋完成签到,获得积分20
9秒前
9秒前
yyyy发布了新的文献求助10
10秒前
10秒前
芳芳发布了新的文献求助10
10秒前
王钟萱发布了新的文献求助10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498