GlobalFlowNet: Video Stabilization using Deep Distilled Global Motion Estimates

光流 计算机科学 平滑的 仿射变换 图像稳定 计算机视觉 人工智能 运动估计 运动场 运动补偿 单应性 数学 图像(数学) 射影空间 统计 投射试验 纯数学
作者
Jerin Geo,Devansh Jain,Ajit Rajwade
标识
DOI:10.1109/wacv56688.2023.00505
摘要

Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as GlobalFlowNet. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained GlobalFlowNet, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. Additionally, we present a new measure for evaluation of video stabilization based on the flow generated by GlobalFlowNet and argue that it is based on a more general motion model in contrast to the affine motion model on which most existing measures are based. The source code is publicly available at https://github.com/GlobalFlowNet/GlobalFlowNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shs发布了新的文献求助10
刚刚
栗子完成签到,获得积分10
2秒前
圆彰七大发布了新的文献求助10
3秒前
3秒前
眼里还有光完成签到,获得积分10
4秒前
4秒前
jie完成签到,获得积分20
4秒前
WANG完成签到,获得积分10
5秒前
5秒前
leinuo077完成签到,获得积分10
5秒前
8秒前
9秒前
ciooli完成签到,获得积分20
9秒前
林一存完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
能能发布了新的文献求助10
11秒前
英俊的鱼完成签到,获得积分10
12秒前
Jasper应助小猪啵比采纳,获得10
12秒前
谦让月饼完成签到 ,获得积分10
12秒前
13秒前
13秒前
科研小白完成签到,获得积分10
13秒前
13秒前
moonn完成签到,获得积分10
14秒前
DYF发布了新的文献求助10
15秒前
15秒前
jie关注了科研通微信公众号
15秒前
16秒前
16秒前
无尽夏完成签到,获得积分10
16秒前
白昼の月完成签到 ,获得积分0
16秒前
科研通AI2S应助Hbobo采纳,获得10
17秒前
NexusExplorer应助tier3采纳,获得10
17秒前
bluesmile完成签到,获得积分10
18秒前
好困应助Riggle G采纳,获得10
18秒前
小羊关注了科研通微信公众号
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655