GlobalFlowNet: Video Stabilization using Deep Distilled Global Motion Estimates

光流 计算机科学 平滑的 仿射变换 图像稳定 计算机视觉 人工智能 运动估计 运动场 运动补偿 单应性 数学 图像(数学) 统计 投射试验 射影空间 纯数学
作者
Jerin Geo,Devansh Jain,Ajit Rajwade
标识
DOI:10.1109/wacv56688.2023.00505
摘要

Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as GlobalFlowNet. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained GlobalFlowNet, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. Additionally, we present a new measure for evaluation of video stabilization based on the flow generated by GlobalFlowNet and argue that it is based on a more general motion model in contrast to the affine motion model on which most existing measures are based. The source code is publicly available at https://github.com/GlobalFlowNet/GlobalFlowNet

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助香米采纳,获得10
刚刚
1秒前
关山月发布了新的文献求助10
1秒前
Yvoone发布了新的文献求助10
1秒前
天天快乐应助www采纳,获得10
2秒前
2秒前
2秒前
传奇3应助lbl234采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助水牛采纳,获得10
4秒前
4秒前
双门洞完成签到,获得积分10
4秒前
4秒前
今后应助蹦蹦采纳,获得10
5秒前
上官若男应助RuiBigHead采纳,获得10
6秒前
7秒前
8秒前
8秒前
ydoyate发布了新的文献求助10
8秒前
苏瑾完成签到 ,获得积分10
9秒前
佳jia发布了新的文献求助10
9秒前
机智333发布了新的文献求助10
9秒前
9秒前
10秒前
broccoli7发布了新的文献求助10
11秒前
自然若完成签到,获得积分10
11秒前
威武大有发布了新的文献求助10
11秒前
NexusExplorer应助xrzxlxj613814采纳,获得30
12秒前
zjr完成签到,获得积分20
12秒前
13秒前
关山月完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
科研狗-加班族完成签到,获得积分10
14秒前
BowieHuang应助贺贺吖采纳,获得10
14秒前
健壮问兰发布了新的文献求助10
14秒前
心海发布了新的文献求助10
15秒前
15秒前
云淡风轻完成签到,获得积分10
16秒前
xwy发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761878
求助须知:如何正确求助?哪些是违规求助? 5532710
关于积分的说明 15401214
捐赠科研通 4898111
什么是DOI,文献DOI怎么找? 2634724
邀请新用户注册赠送积分活动 1582875
关于科研通互助平台的介绍 1538103