GlobalFlowNet: Video Stabilization using Deep Distilled Global Motion Estimates

光流 计算机科学 平滑的 仿射变换 图像稳定 计算机视觉 人工智能 运动估计 运动场 运动补偿 单应性 数学 图像(数学) 统计 投射试验 射影空间 纯数学
作者
Jerin Geo,Devansh Jain,Ajit Rajwade
标识
DOI:10.1109/wacv56688.2023.00505
摘要

Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as GlobalFlowNet. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained GlobalFlowNet, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. Additionally, we present a new measure for evaluation of video stabilization based on the flow generated by GlobalFlowNet and argue that it is based on a more general motion model in contrast to the affine motion model on which most existing measures are based. The source code is publicly available at https://github.com/GlobalFlowNet/GlobalFlowNet

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助w1kend采纳,获得10
刚刚
luo完成签到,获得积分10
刚刚
刚刚
徐甜完成签到 ,获得积分10
2秒前
zhizhi完成签到,获得积分10
2秒前
2秒前
3秒前
eric888应助wencan采纳,获得10
3秒前
乐乐应助Serena采纳,获得10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Syne_发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
Siriluck完成签到 ,获得积分10
9秒前
luo发布了新的文献求助10
9秒前
wyw完成签到 ,获得积分10
10秒前
徐哈哈完成签到,获得积分10
10秒前
July完成签到 ,获得积分10
11秒前
上官若男应助keyantongxdl采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
12秒前
孤雁北上发布了新的文献求助10
13秒前
14秒前
15秒前
刘振扬完成签到,获得积分10
16秒前
月下独酌完成签到,获得积分10
17秒前
zzzz完成签到,获得积分20
18秒前
19秒前
20秒前
蓝天应助ll200207采纳,获得10
20秒前
香蕉诗蕊应助Syne_采纳,获得10
21秒前
去码头整点薯条完成签到,获得积分10
21秒前
21秒前
可爱的函函应助里已经采纳,获得20
22秒前
22秒前
投必快业必毕完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749