GlobalFlowNet: Video Stabilization using Deep Distilled Global Motion Estimates

光流 计算机科学 平滑的 仿射变换 图像稳定 计算机视觉 人工智能 运动估计 运动场 运动补偿 单应性 数学 图像(数学) 射影空间 统计 投射试验 纯数学
作者
Jerin Geo,Devansh Jain,Ajit Rajwade
标识
DOI:10.1109/wacv56688.2023.00505
摘要

Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as GlobalFlowNet. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained GlobalFlowNet, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. Additionally, we present a new measure for evaluation of video stabilization based on the flow generated by GlobalFlowNet and argue that it is based on a more general motion model in contrast to the affine motion model on which most existing measures are based. The source code is publicly available at https://github.com/GlobalFlowNet/GlobalFlowNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大恐龙的噗噗完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
haifang完成签到,获得积分10
刚刚
小鹿5460完成签到,获得积分10
1秒前
1秒前
十二月发布了新的文献求助10
1秒前
Eric完成签到,获得积分10
1秒前
CodeCraft应助钟沁洋采纳,获得10
3秒前
香蕉觅云应助章家炜采纳,获得10
3秒前
合适的笑阳完成签到,获得积分10
3秒前
4秒前
5秒前
危机的安容完成签到,获得积分10
5秒前
小熊完成签到 ,获得积分10
6秒前
Philip发布了新的文献求助10
6秒前
飘萍过客完成签到,获得积分10
7秒前
我是老大应助和谐幻柏采纳,获得10
8秒前
万能图书馆应助yh采纳,获得10
9秒前
搜集达人应助那咋了采纳,获得10
9秒前
想毕业的小羔完成签到,获得积分10
9秒前
9秒前
9秒前
领导范儿应助aikeyan采纳,获得10
9秒前
阿胡完成签到 ,获得积分10
10秒前
麻师长完成签到,获得积分10
10秒前
华仔应助zgy1106采纳,获得10
11秒前
12秒前
心灵美代双完成签到,获得积分10
12秒前
orixero应助KennyS采纳,获得50
13秒前
高贵的雅山完成签到,获得积分10
13秒前
不周山僵尸完成签到,获得积分10
13秒前
14秒前
wanci应助Philip采纳,获得10
15秒前
16秒前
daker发布了新的文献求助10
16秒前
情怀应助假行僧采纳,获得10
19秒前
懒羊羊完成签到,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023511
求助须知:如何正确求助?哪些是违规求助? 3563520
关于积分的说明 11343006
捐赠科研通 3294978
什么是DOI,文献DOI怎么找? 1814866
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019