纳米片
复合数
扫描电子显微镜
纳米复合材料
检出限
透射电子显微镜
材料科学
工作温度
热液循环
陶瓷
微观结构
纳米技术
化学工程
化学
复合材料
色谱法
电气工程
工程类
作者
Hao-Yun Zou,Linxuan Li,Ying Huang,Yi Tang,Jianping Wu,Zhongliang Xiao,Ju‐Lan Zeng,Donghong Yu,Zhong Cao
出处
期刊:Analytical Methods
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (10): 1315-1322
被引量:4
摘要
In this work, a new type of H2S sensor was fabricated by means of drop-coating of an Au/SnO-SnO2 nanosheet material, which was prepared by a one-pot hydrothermal reaction, onto a gold electrode in an alumina ceramic tube with the formation of a thin nanocomposite film. The microstructure and morphology of the nanosheet composites were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A gas-sensitivity study presented good H2S-sensing performance of such Au/SnO-SnO2 nanosheet composites. At an optimal operating temperature of 240 °C and ambient temperature of 25 °C, the resulting sensor showed a good linear response to H2S in a range of 1.0 to 100 ppm with a low detection limit of 0.7 ppm, and a very fast response-recovery time of 22 s for response and 63 s for recovery, respectively. The sensor was also unaffected by ambient humidity and had good reproducibility and selectivity. When being applied to the monitoring of H2S in an atmospheric environment in a pig farm, the response signal to H2S was only attenuated by 4.69% within 90 days, proving that the sensor had a long and stable service lifetime for continuous running and showing its important practical application prospects.
科研通智能强力驱动
Strongly Powered by AbleSci AI