钙钛矿(结构)
制作
材料科学
氧化物
能量转换效率
氧化镍
非阻塞I/O
氧化锡
金属
光伏系统
纳米技术
光电子学
化学工程
化学
工程类
电气工程
冶金
催化作用
替代医学
病理
医学
生物化学
作者
Jing Zhang,James McGettrick,Kangyu Ji,J.X. Bi,Thomas Webb,Xueping Liu,Dongtao Liu,Aobo Ren,Yuren Xiang,Bowei Li,Vlad Stolojan,Trystan Watson,Samuel D. Stranks,Wei Zhang
出处
期刊:Energy & environmental materials
日期:2023-02-02
被引量:7
摘要
Metal oxide charge transport materials are preferable for realizing long‐term stable and potentially low‐cost perovskite solar cells (PSCs). However, due to some technical difficulties (e.g., intricate fabrication protocols, high‐temperature heating process, incompatible solvents, etc.), it is still challenging to achieve efficient and reliable all‐metal‐oxide‐based devices. Here, we developed efficient inverted PSCs (IPSCs) based on solution‐processed nickel oxide (NiO x ) and tin oxide (SnO 2 ) nanoparticles, working as hole and electron transport materials respectively, enabling a fast and balanced charge transfer for photogenerated charge carriers. Through further understanding and optimizing the perovskite/metal oxide interfaces, we have realized an outstanding power conversion efficiency (PCE) of 23.5% (the bandgap of the perovskite is 1.62 eV), which is the highest efficiency among IPSCs based on all‐metal‐oxide charge transport materials. Thanks to these stable metal oxides and improved interface properties, ambient stability (retaining 95% of initial PCE after 1 month), thermal stability (retaining 80% of initial PCE after 2 weeks) and light stability (retaining 90% of initial PCE after 1000 hours aging) of resultant devices are enhanced significantly. In addition, owing to the low‐temperature fabrication procedures of the entire device, we have obtained a PCE of over 21% for flexible IPSCs with enhanced operational stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI