Insomnia Severity Index: A reliability generalisation meta‐analysis

克朗巴赫阿尔法 荟萃分析 可靠性(半导体) 统计 出版偏见 随机效应模型 心理学 医学 临床心理学 心理测量学 数学 内科学 量子力学 物理 功率(物理)
作者
Luíza Cerri,Mariana Carvalho Justo,Vanda Clemente,Ana Allen Gomes,Anabela Pereira,Daniel Ruivo Marques
出处
期刊:Journal of Sleep Research [Wiley]
卷期号:32 (4) 被引量:24
标识
DOI:10.1111/jsr.13835
摘要

The aim of the current study was to conduct a reliability generalisation (RG) meta-analysis of Cronbach's alpha for the Insomnia Severity Index (ISI). A systematic search of three databases (PubMed, Scopus, and Web of Science) from inception to 12 March 2021 was performed. Publications that reported Cronbach's alpha for the total ISI score were included. Only psychometric-focussed studies were considered. Meta-analysis was carried out using a random-effects model to derive a pooled estimate of Cronbach's alphas. The number of participants in the included publications ranged from 25 to 12,056, with 33 studies (42 estimates) comprising internal consistency coefficients, and a combined sample size of N = 29,688. The age range of the included publications was from 13.4 to 74.3 years. Data extraction implied 33 publications out of 706 found through the database search. Cronbach's alphas ranged from 0.65 to 0.92. The majority of the reported coefficients were ≥0.7 and presented a low risk of bias (n = 32). The pooled alpha coefficient was 0.83 (IC [0.81-0.85]; SE = 0.009) with high heterogeneity among the included publications (I2 = 97%). Subgroup analyses including moderators such as continent, setting, risk of bias, and age did not affect significantly the overall result. In general, the cumulative estimate of Cronbach's alpha for the ISI is good. However, this finding should be interpreted with caution since there is a high heterogeneity level and some of the studies might not have checked the assumptions underlying Cronbach's alphas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zlh采纳,获得10
刚刚
1秒前
英勇的芝麻完成签到,获得积分10
1秒前
badada发布了新的文献求助10
1秒前
1秒前
Novoa应助Lasse采纳,获得10
2秒前
2秒前
2秒前
3秒前
安静羿关注了科研通微信公众号
4秒前
Sakura完成签到 ,获得积分10
4秒前
Vince完成签到,获得积分10
4秒前
5秒前
5秒前
卡皮巴拉不卡屁完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
123完成签到 ,获得积分10
6秒前
老迟到的冬瓜完成签到,获得积分10
6秒前
Melody完成签到,获得积分10
6秒前
6秒前
Jasper应助愉快的莹采纳,获得10
6秒前
badada完成签到,获得积分10
6秒前
Bao_o_o完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
笨蛋小章完成签到,获得积分10
9秒前
9秒前
朱子煊发布了新的文献求助10
9秒前
DNA完成签到,获得积分10
9秒前
梅菜菜发布了新的文献求助10
9秒前
yzz发布了新的文献求助10
9秒前
领导范儿应助duoduo7采纳,获得10
9秒前
CipherSage应助sunshine采纳,获得10
10秒前
我要发Nature完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助30
10秒前
娜娜酱油发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791