Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy

电池(电) 计算机科学 均方误差 介电谱 监督学习 电阻抗 人工神经网络 原始数据 机器学习 卷积神经网络 人工智能 模式识别(心理学) 数学 统计 工程类 功率(物理) 电气工程 化学 程序设计语言 物理 物理化学 量子力学 电化学 电极
作者
Rui Xiong,Jinpeng Tian,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:76: 404-413 被引量:85
标识
DOI:10.1016/j.jechem.2022.09.045
摘要

Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems. However, they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities, leading to prohibitive costs and efforts for data collection. In response to this issue, this study proposes a convolutional neural network (CNN) based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input. More importantly, an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process, thereby significantly alleviating the cost of collecting training data. Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method. The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given. However, the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available. In this case, the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%. A further validation under different current rates and states of charge confirms the effectiveness of the proposed method. Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2022.20完成签到,获得积分10
1秒前
zhentg完成签到,获得积分0
1秒前
小青年儿完成签到 ,获得积分10
2秒前
harmy完成签到,获得积分10
3秒前
小亿发布了新的文献求助30
5秒前
8秒前
10秒前
本凡完成签到 ,获得积分10
11秒前
wanci应助NancyDee采纳,获得10
12秒前
Bordyfan完成签到,获得积分10
12秒前
15秒前
芳芳完成签到,获得积分10
18秒前
22秒前
zl完成签到 ,获得积分10
22秒前
N维完成签到,获得积分10
22秒前
xx完成签到 ,获得积分10
22秒前
新恣助发布了新的文献求助10
25秒前
27秒前
xiaoyu完成签到,获得积分10
28秒前
WuZhipeng完成签到,获得积分10
29秒前
仁爱柠檬完成签到,获得积分10
30秒前
32秒前
34秒前
34秒前
leo完成签到 ,获得积分10
35秒前
youyuguang完成签到 ,获得积分10
35秒前
RBT发布了新的文献求助10
36秒前
37秒前
ccc发布了新的文献求助10
38秒前
啾咪完成签到 ,获得积分10
39秒前
zl发布了新的文献求助10
39秒前
39秒前
大猫不吃鱼完成签到,获得积分10
40秒前
40秒前
iVANPENNY应助undertaker采纳,获得10
41秒前
keke发布了新的文献求助200
42秒前
li发布了新的文献求助30
43秒前
pugongying发布了新的文献求助10
43秒前
Hello应助ccc采纳,获得10
44秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134