Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy

电池(电) 计算机科学 均方误差 介电谱 监督学习 电阻抗 人工神经网络 原始数据 机器学习 卷积神经网络 人工智能 模式识别(心理学) 数学 统计 工程类 功率(物理) 电气工程 化学 程序设计语言 物理 物理化学 量子力学 电化学 电极
作者
Rui Xiong,Jinpeng Tian,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:76: 404-413 被引量:85
标识
DOI:10.1016/j.jechem.2022.09.045
摘要

Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems. However, they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities, leading to prohibitive costs and efforts for data collection. In response to this issue, this study proposes a convolutional neural network (CNN) based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input. More importantly, an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process, thereby significantly alleviating the cost of collecting training data. Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method. The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given. However, the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available. In this case, the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%. A further validation under different current rates and states of charge confirms the effectiveness of the proposed method. Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助儒雅的梦芝采纳,获得10
1秒前
CodeCraft应助哈利波特采纳,获得10
2秒前
李爱国应助唐Doctor采纳,获得10
4秒前
5秒前
5秒前
6秒前
7秒前
anna发布了新的文献求助10
7秒前
9秒前
10秒前
杪杪发布了新的文献求助10
10秒前
12秒前
hua发布了新的文献求助10
12秒前
小仙丹完成签到,获得积分20
12秒前
13秒前
锦城纯契完成签到 ,获得积分10
13秒前
feng1235发布了新的文献求助20
14秒前
gxzsdf完成签到 ,获得积分10
15秒前
GGBOND发布了新的文献求助10
15秒前
知性的剑身完成签到,获得积分10
15秒前
Dalia完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
萨日呼发布了新的文献求助10
18秒前
史念薇完成签到,获得积分10
19秒前
传奇3应助晓晓采纳,获得10
21秒前
24秒前
细腻涛完成签到,获得积分10
28秒前
28秒前
儒雅的梦芝完成签到,获得积分10
29秒前
Rondab应助科研达人采纳,获得30
30秒前
何白完成签到,获得积分10
30秒前
31秒前
哈利波特发布了新的文献求助10
32秒前
qsy完成签到,获得积分10
32秒前
共享精神应助chun采纳,获得10
33秒前
小马甲应助mr.pork采纳,获得10
33秒前
清新的小懒猪完成签到,获得积分10
34秒前
酷波er应助科研通管家采纳,获得10
34秒前
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105