Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy

电池(电) 计算机科学 均方误差 介电谱 监督学习 电阻抗 人工神经网络 原始数据 机器学习 卷积神经网络 人工智能 模式识别(心理学) 数学 统计 工程类 功率(物理) 电气工程 化学 程序设计语言 物理 物理化学 量子力学 电化学 电极
作者
Rui Xiong,Jinpeng Tian,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:76: 404-413 被引量:85
标识
DOI:10.1016/j.jechem.2022.09.045
摘要

Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems. However, they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities, leading to prohibitive costs and efforts for data collection. In response to this issue, this study proposes a convolutional neural network (CNN) based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input. More importantly, an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process, thereby significantly alleviating the cost of collecting training data. Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method. The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given. However, the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available. In this case, the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%. A further validation under different current rates and states of charge confirms the effectiveness of the proposed method. Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lca507发布了新的文献求助10
1秒前
1秒前
月亮央于星河完成签到,获得积分10
2秒前
2秒前
娇娇发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Starry发布了新的文献求助10
3秒前
山月发布了新的文献求助10
3秒前
herdwind完成签到,获得积分10
3秒前
玥越发布了新的文献求助10
3秒前
4秒前
4秒前
wantong完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
gj2221423发布了新的文献求助10
5秒前
6秒前
6秒前
bdfh发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
酷波er应助lijiayi采纳,获得10
7秒前
呆萌的土豆完成签到,获得积分20
7秒前
7秒前
rrrrr发布了新的文献求助10
7秒前
重要的扬完成签到,获得积分10
8秒前
orixero应助布丁仔采纳,获得10
9秒前
9秒前
10秒前
wantong发布了新的文献求助10
10秒前
阿军发布了新的文献求助10
11秒前
故意的小熊猫完成签到,获得积分20
11秒前
何必在乎发布了新的文献求助10
11秒前
彭于晏应助山月采纳,获得10
12秒前
轻风发布了新的文献求助10
12秒前
寒冷书包关注了科研通微信公众号
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711456
求助须知:如何正确求助?哪些是违规求助? 5203871
关于积分的说明 15264340
捐赠科研通 4863728
什么是DOI,文献DOI怎么找? 2610906
邀请新用户注册赠送积分活动 1561227
关于科研通互助平台的介绍 1518627