Unfolding community homophily in U.S. metropolitans via human mobility

同性恋 社会学 社会科学
作者
Xiao Huang,Yuhui Zhao,Siqin Wang,Xiao Li,Di Yang,Yu Feng,Yang Xu,Liao Zhu,Bi Yu Chen
出处
期刊:Cities [Elsevier]
卷期号:129: 103929-103929 被引量:10
标识
DOI:10.1016/j.cities.2022.103929
摘要

As described in the proverb “birds of a feather flock together”, the term homophily narrates the principle that stronger spatial interactions tend to be formed among locations with similar characteristics. Taking advantage of mobility networks derived from around 45 million mobile devices in the U.S. and targeting the top twenty most-populated U.S. Metropolitan Statistical Areas (MSAs), we extract human mobility structures by detecting communities formed by strong spatial links and unravel the homophily effect at the community level using information entropy that measures the chaoticness of societal settings within communities. The results suggest that the power-law still, to a large extent, governs the travel patterns in MSAs. However, communities featured by strong human interactions can sometimes transcend geographic proximity in modern metropolitans. The entropy varies across communities, and a community can exhibit variation of homophily levels when different sociodemographic settings are investigated. Our study proves the ubiquity of the homophily phenomenon in modern metropolitans and documents its variation from different social perspectives from a mobility-oriented setting. The conceptual and analytical knowledge, as well as the results of this study, are expected to facilitate better policymaking to promote social integration in metropolitan areas. • We reveal the similarity and dissimilarity of mobility profiles in the top twenty most populated U.S. metropolitan areas. • We introduce “community entropy” to reflect the chaoticness among community members formed by strong spatial interactions. • The homophily levels vary across/within communities when different sociodemographic settings are investigated. • The results call for place-based planning and developing community initiatives for a more integrated and harmonious society.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
necos发布了新的文献求助10
1秒前
1秒前
2秒前
fmx完成签到,获得积分10
2秒前
残剑月发布了新的文献求助10
3秒前
3秒前
weihongjuan发布了新的文献求助10
3秒前
帅气的馒头应助酷炫初雪采纳,获得10
3秒前
janette完成签到,获得积分10
4秒前
爆米花应助乌衣白马采纳,获得10
4秒前
4秒前
财神爷心尖尖的宝儿完成签到,获得积分10
5秒前
zyc发布了新的文献求助10
5秒前
nn完成签到,获得积分20
5秒前
阿屁屁猪完成签到,获得积分10
7秒前
7秒前
TearMarks完成签到 ,获得积分10
7秒前
小白发布了新的文献求助200
7秒前
7秒前
酷波er应助baobaot采纳,获得10
8秒前
勿忘9451发布了新的文献求助10
8秒前
研友_Z6G2D8完成签到,获得积分10
8秒前
可爱的函函应助pjjpk01采纳,获得10
9秒前
贝尔摩德发布了新的文献求助10
10秒前
CR完成签到,获得积分10
11秒前
Liuya发布了新的文献求助10
11秒前
11秒前
科目三应助辛勤面包采纳,获得10
11秒前
Mrlazy发布了新的文献求助10
11秒前
小蘑菇应助马明旋采纳,获得10
11秒前
11秒前
12秒前
12秒前
紫丁香完成签到 ,获得积分10
13秒前
14秒前
14秒前
陈BB发布了新的文献求助20
14秒前
ww完成签到,获得积分10
14秒前
田小班完成签到,获得积分10
14秒前
传奇3应助把握有度采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836