Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细心小霜发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
tianjiu发布了新的文献求助10
2秒前
xh1255发布了新的文献求助10
2秒前
林狗发布了新的文献求助10
2秒前
2秒前
3秒前
CipherSage应助大胆的太英采纳,获得10
3秒前
4秒前
4秒前
4秒前
坦率含双发布了新的文献求助10
4秒前
Li应助Ye采纳,获得10
5秒前
3333发布了新的文献求助10
5秒前
5秒前
chekd发布了新的文献求助10
6秒前
wuhuhu完成签到,获得积分10
6秒前
娜娜发布了新的文献求助10
8秒前
CodeCraft应助乐兰正雪采纳,获得10
8秒前
xh1255完成签到,获得积分10
9秒前
9秒前
老实的友桃完成签到 ,获得积分10
9秒前
10秒前
出其东门发布了新的文献求助10
10秒前
Takahara2000应助anqin540540采纳,获得10
11秒前
所所应助拉长的傲菡采纳,获得10
11秒前
科研通AI2S应助夭夭采纳,获得10
12秒前
善学以致用应助lujiajia采纳,获得10
13秒前
15秒前
16秒前
CodeCraft应助COSMOS采纳,获得10
16秒前
FightPeng发布了新的文献求助10
16秒前
赘婿应助欣慰元蝶采纳,获得10
18秒前
19秒前
Invictus发布了新的文献求助10
20秒前
ysan发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159073
求助须知:如何正确求助?哪些是违规求助? 4353650
关于积分的说明 13556277
捐赠科研通 4197287
什么是DOI,文献DOI怎么找? 2301960
邀请新用户注册赠送积分活动 1301944
关于科研通互助平台的介绍 1247095