Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助天使她男人采纳,获得10
刚刚
1秒前
1秒前
瘦瘦寄风完成签到,获得积分10
2秒前
是大胖子呀完成签到,获得积分10
4秒前
Huco完成签到,获得积分10
5秒前
klicking发布了新的文献求助10
5秒前
7秒前
胡萝贝应助YuxinChen采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
lht关闭了lht文献求助
11秒前
123关注了科研通微信公众号
11秒前
在荔栀阿完成签到 ,获得积分10
13秒前
单薄枕头完成签到,获得积分10
13秒前
1851611453发布了新的文献求助10
13秒前
13秒前
闪光的flash完成签到 ,获得积分10
13秒前
浮游应助黄家宝采纳,获得10
15秒前
黑摄会阿Fay完成签到 ,获得积分10
15秒前
诚心仙人掌完成签到,获得积分10
15秒前
15秒前
甜美元灵完成签到,获得积分20
16秒前
17秒前
18秒前
18秒前
Steplan完成签到,获得积分10
19秒前
浮游应助涂玉含采纳,获得10
19秒前
nenoaowu应助YYY采纳,获得30
19秒前
19秒前
上官若男应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993552
求助须知:如何正确求助?哪些是违规求助? 4241343
关于积分的说明 13213992
捐赠科研通 4036754
什么是DOI,文献DOI怎么找? 2208675
邀请新用户注册赠送积分活动 1219601
关于科研通互助平台的介绍 1137928