Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助灯没点采纳,获得10
刚刚
Ava应助黄焖鸡米饭采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
PHQS关注了科研通微信公众号
6秒前
7秒前
hhh完成签到,获得积分10
7秒前
敏捷的豹发布了新的文献求助10
7秒前
poppy完成签到,获得积分10
8秒前
9秒前
9秒前
充电宝应助书记采纳,获得10
11秒前
苍术完成签到,获得积分10
11秒前
12秒前
藏杨同学发布了新的文献求助10
12秒前
TYW完成签到,获得积分10
12秒前
小n完成签到,获得积分10
12秒前
相思赋予谁完成签到,获得积分10
12秒前
王彤发布了新的文献求助30
14秒前
14秒前
慕青应助冷酷俊驰采纳,获得100
15秒前
15秒前
PHQS发布了新的文献求助10
18秒前
lynn完成签到,获得积分10
19秒前
cccxq发布了新的文献求助10
21秒前
NexusExplorer应助我就是KKKK采纳,获得30
21秒前
研友_VZG7GZ应助书记采纳,获得10
23秒前
AbcD完成签到,获得积分10
24秒前
斯文败类应助cccxq采纳,获得10
25秒前
量子星尘发布了新的文献求助200
26秒前
王彤完成签到,获得积分20
26秒前
26秒前
楚乐倩完成签到,获得积分20
27秒前
企鹅完成签到,获得积分10
27秒前
30秒前
浮游应助承宇采纳,获得10
31秒前
muni完成签到,获得积分10
31秒前
31秒前
乘风完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420968
求助须知:如何正确求助?哪些是违规求助? 4535922
关于积分的说明 14151957
捐赠科研通 4452682
什么是DOI,文献DOI怎么找? 2442496
邀请新用户注册赠送积分活动 1433930
关于科研通互助平台的介绍 1411024