亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小博发布了新的文献求助10
4秒前
童大大完成签到,获得积分20
23秒前
小博完成签到,获得积分10
32秒前
CodeCraft应助糯糯采纳,获得10
42秒前
汉堡包应助Plum22采纳,获得10
56秒前
岁岁完成签到 ,获得积分10
1分钟前
1分钟前
Plum22发布了新的文献求助10
1分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
cherlie应助Plum22采纳,获得20
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
丰富莹芝发布了新的文献求助10
4分钟前
4分钟前
糯糯发布了新的文献求助10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
喜悦幻灵完成签到 ,获得积分10
4分钟前
4分钟前
热心易绿完成签到 ,获得积分10
4分钟前
丰富莹芝完成签到,获得积分10
4分钟前
5分钟前
5分钟前
cherlie应助Plum22采纳,获得20
5分钟前
edisonyan完成签到 ,获得积分10
5分钟前
刘宇童发布了新的文献求助10
5分钟前
5分钟前
大个应助刘宇童采纳,获得10
5分钟前
小二郎应助xiongdi521采纳,获得10
6分钟前
6分钟前
xiongdi521发布了新的文献求助10
6分钟前
6分钟前
6分钟前
Ava应助吕易巧采纳,获得10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990148
求助须知:如何正确求助?哪些是违规求助? 3532119
关于积分的说明 11256456
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882288
科研通“疑难数据库(出版商)”最低求助积分说明 809228