Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助大反应釜采纳,获得10
刚刚
月夜孤影完成签到,获得积分10
1秒前
1秒前
1秒前
今后应助矮小的海豚采纳,获得10
1秒前
Miners发布了新的文献求助10
1秒前
笔墨留香发布了新的文献求助10
1秒前
研友_VZG7GZ应助王先生采纳,获得10
2秒前
iwonder完成签到 ,获得积分10
2秒前
可爱的函函应助追寻采纳,获得10
2秒前
3秒前
清脆火龙果完成签到,获得积分10
3秒前
可爱的函函应助暴躁的苡采纳,获得10
3秒前
我爱吃火锅完成签到,获得积分10
4秒前
4秒前
7九完成签到,获得积分10
4秒前
NexusExplorer应助晞晞采纳,获得10
5秒前
Zx_1993应助典雅涵瑶采纳,获得50
5秒前
乐乐应助Qing采纳,获得10
5秒前
四叶草哦完成签到,获得积分10
6秒前
宋浩奇发布了新的文献求助10
6秒前
Hello应助洁净诗槐采纳,获得10
7秒前
z荩完成签到,获得积分20
7秒前
虚拟的秋寒完成签到,获得积分10
7秒前
7秒前
111发布了新的文献求助10
8秒前
qpisuo发布了新的文献求助10
9秒前
deep完成签到,获得积分20
9秒前
10秒前
10秒前
浮游应助Zhengkeke采纳,获得10
11秒前
orixero应助云山采纳,获得10
12秒前
12秒前
12秒前
SciGPT应助chenping_an采纳,获得10
12秒前
13秒前
Yi羿完成签到 ,获得积分10
13秒前
13秒前
共享精神应助fkhuny采纳,获得10
13秒前
SimonShaw完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165