Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hulei发布了新的文献求助10
刚刚
SHDeathlock发布了新的文献求助20
刚刚
科研通AI5应助酷酷的涵蕾采纳,获得10
刚刚
韶邑发布了新的文献求助10
2秒前
3秒前
creNdro发布了新的文献求助10
3秒前
火星上的夏青给火星上的夏青的求助进行了留言
3秒前
黄诺完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助50
5秒前
中科路2020发布了新的文献求助30
6秒前
8秒前
8秒前
浮游应助0304采纳,获得10
8秒前
9秒前
缥缈的松鼠完成签到 ,获得积分10
10秒前
10秒前
10秒前
小点点cy_完成签到 ,获得积分10
11秒前
去偷火龙果完成签到,获得积分10
11秒前
桃桃不加冰完成签到,获得积分10
12秒前
13秒前
13秒前
罗4发布了新的文献求助10
14秒前
Sailzyf完成签到,获得积分10
14秒前
15秒前
绝情汤姆发布了新的文献求助10
15秒前
乐乐应助LinYX采纳,获得10
16秒前
怕黑岱周发布了新的文献求助10
16秒前
17秒前
f凡发布了新的文献求助10
17秒前
aaa发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助150
20秒前
perrier发布了新的文献求助10
20秒前
CodeCraft应助radom采纳,获得10
21秒前
21秒前
22秒前
22秒前
shmily发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778