已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
COSMAO应助Philip采纳,获得10
1秒前
大个应助Philip采纳,获得10
1秒前
小蘑菇应助滚筒洗衣机采纳,获得10
1秒前
2秒前
唐礼祥完成签到,获得积分10
3秒前
1752发布了新的文献求助10
3秒前
Zhang完成签到,获得积分10
5秒前
科研通AI5应助小羽采纳,获得10
5秒前
5秒前
5秒前
Ava应助绮山采纳,获得10
5秒前
生动安南发布了新的文献求助10
5秒前
风清扬发布了新的文献求助10
6秒前
6秒前
小超人完成签到,获得积分10
7秒前
雨yuhe完成签到,获得积分20
7秒前
8秒前
8秒前
科研通AI6应助孙皓然采纳,获得10
9秒前
10秒前
beifa发布了新的文献求助10
11秒前
飘逸访文发布了新的文献求助10
13秒前
淡定星星完成签到,获得积分10
13秒前
HWX发布了新的文献求助10
14秒前
无心发布了新的文献求助10
15秒前
fox力发布了新的文献求助10
15秒前
15秒前
单手开坦克完成签到,获得积分20
17秒前
FashionBoy应助beifa采纳,获得10
17秒前
yehata发布了新的文献求助10
19秒前
滚筒洗衣机完成签到,获得积分20
20秒前
20秒前
21秒前
Akim应助孙皓然采纳,获得10
21秒前
姚小楠完成签到 ,获得积分10
23秒前
可久斯基完成签到 ,获得积分10
23秒前
25秒前
谨慎博超完成签到,获得积分10
27秒前
27秒前
风清扬发布了新的文献求助50
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197439
求助须知:如何正确求助?哪些是违规求助? 4378725
关于积分的说明 13636872
捐赠科研通 4234528
什么是DOI,文献DOI怎么找? 2322779
邀请新用户注册赠送积分活动 1320916
关于科研通互助平台的介绍 1271550