Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助任任任采纳,获得10
1秒前
LYX完成签到,获得积分10
1秒前
朱紫祎应助文件撤销了驳回
2秒前
3秒前
peng1发布了新的文献求助10
3秒前
3秒前
4秒前
bkagyin应助自由元菱采纳,获得10
4秒前
粽子完成签到,获得积分10
5秒前
研友_VZG7GZ应助谢梓良采纳,获得10
5秒前
6秒前
6秒前
7秒前
小马甲应助没有熬夜采纳,获得10
7秒前
懒懒发布了新的文献求助10
8秒前
9秒前
哈哈发布了新的文献求助10
9秒前
上官若男应助Wri采纳,获得10
9秒前
研友_VZG7GZ应助满意的不二采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
谢梓良完成签到,获得积分10
12秒前
12秒前
平常寻冬发布了新的文献求助50
12秒前
深情安青应助Cdws采纳,获得10
12秒前
14秒前
14秒前
14秒前
14秒前
赘婿应助何处芳歇采纳,获得10
15秒前
核桃发布了新的文献求助10
15秒前
16秒前
跃天杜完成签到,获得积分10
16秒前
ssllmm发布了新的文献求助10
17秒前
17秒前
北望发布了新的文献求助20
19秒前
英俊的铭应助天际采纳,获得10
19秒前
cqwswfl发布了新的文献求助10
19秒前
Ffan完成签到 ,获得积分10
19秒前
懒懒完成签到,获得积分10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736