Multitask Multiobjective Genetic Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop Scheduling

计算机科学 启发式 作业车间调度 调度(生产过程) 超启发式 遗传程序设计 数学优化 多目标优化 流水车间调度 人工智能 机器学习 数学 地铁列车时刻表 操作系统 机器人 机器人学习 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4473-4486 被引量:36
标识
DOI:10.1109/tcyb.2022.3196887
摘要

Evolutionary multitask multiobjective learning has been widely used for handling more than one multiobjective task simultaneously. However, it is rarely used in dynamic combinatorial optimization problems, which have valuable practical applications such as dynamic flexible job-shop scheduling (DFJSS) in manufacturing. Genetic programming (GP), as a popular hyperheuristic approach, has been used to learn scheduling heuristics for generating schedules for multitask single-objective DFJSS only. Searching in the heuristic space with GP is more difficult than in the solution space, since a small change on heuristics can lead to ineffective or even infeasible solutions. Multiobjective DFJSS is more challenging than single DFJSS, since a scheduling heuristic needs to cope with multiple objectives. To tackle this challenge, we first propose a multipopulation-based multitask multiobjective GP algorithm to preserve the quality of the learned scheduling heuristics for each task. Furthermore, we develop a multitask multiobjective GP algorithm with a task-oriented knowledge-sharing strategy to further improve the effectiveness of learning scheduling heuristics for DFJSS. The results show that the designed multipopulation-based GP algorithms, especially the one with the task-oriented knowledge-sharing strategy, can achieve good performance for all the examined tasks by maintaining the quality and diversity of individuals for corresponding tasks well. The learned Pareto fronts also show that the GP algorithm with task-oriented knowledge-sharing strategy can learn competitive scheduling heuristics for DFJSS on both of the objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助LZH采纳,获得10
刚刚
1秒前
Lucas应助Helbock采纳,获得30
3秒前
lakiliu完成签到,获得积分10
3秒前
科研通AI6应助。。。采纳,获得10
3秒前
5秒前
xxfsx应助清爽的铭采纳,获得10
5秒前
完美世界应助问奈何采纳,获得10
6秒前
snowman完成签到 ,获得积分10
7秒前
7秒前
JamesPei应助Taegu采纳,获得10
7秒前
Owen应助kl小子采纳,获得10
9秒前
米兰无敌发布了新的文献求助10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
时差完成签到,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得200
11秒前
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
12秒前
Tourist应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
13秒前
冷傲长颈鹿完成签到,获得积分10
13秒前
Mic关闭了Mic文献求助
14秒前
O基米德发布了新的文献求助10
15秒前
不想说完成签到,获得积分10
15秒前
clean发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209