De NovoDesign of Molecules with Low Hole Reorganization Energy Based on a Quarter-Million Molecule DFT Screen: Part 2

化学空间 计算机科学 强化学习 人工智能 自编码 生成语法 人工神经网络 空格(标点符号) 机器学习 理论计算机科学 算法 化学 生物化学 药物发现 操作系统
作者
Joshua Staker,Kyle Marshall,Karl Leswing,Tim Robertson,Mathew D. Halls,Alexander Goldberg,Tsuguo Morisato,Hiroyuki Maeshima,T. Ando,Hideyuki Arai,Masaru Sasago,Eiji Fujii,Nobuyuki Matsuzawa
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:126 (34): 5837-5852 被引量:11
标识
DOI:10.1021/acs.jpca.2c04221
摘要

Organic semiconductors have many desirable properties including improved manufacturing and flexible mechanical properties. Due to the vastness of chemical space, it is essential to efficiently explore chemical space when designing new materials, including through the use of generative techniques. New generative machine learning methods for molecular design continue to be published in the literature at a significant rate but successfully adapting methods to new chemistry and problem domains remains difficult. These challenges necessitate continual method evaluation to probe method viability for use in alternative applications not covered in the original works. In continuation of our previous work, we evaluate four additional machine-learning-based de novo methods for generating molecules with high predicted hole mobility for use in semiconductor applications. The four generative methods evaluated here are (1) Molecule Deep Q-Networks (MolDQN), which utilizes Deep-Q learning to directly optimize molecular structure graphs for desired properties instead of generating SMILES, (2) Graph-based Genetic Algorithm (GraphGA), which uses a genetic algorithm for optimization where crossovers and mutations are defined in terms of RDKit's reaction SMILES, (3) Generative Tensorial Reinforcement Learning (GENTRL), which is a variational autoencoder (VAE) with a learned prior distribution and optimized using reinforcement learning, and (4) Monte Carlo tree search exploration of chemical space in conjunction with a recurrent neural network (RNN) decoder (ChemTS). The generated molecules were evaluated using density functional theory (DFT) and we discovered better performing molecules with the GraphGA method compared to the other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
michaeleh完成签到,获得积分10
刚刚
1秒前
外向访卉发布了新的文献求助10
3秒前
爱听歌契发布了新的文献求助10
5秒前
酷波er应助Zoom采纳,获得10
6秒前
6秒前
潇潇声韵完成签到,获得积分10
6秒前
阿姊完成签到 ,获得积分10
7秒前
大模型应助yyy采纳,获得10
7秒前
碰杯养生茶完成签到 ,获得积分10
8秒前
爆米花应助王铭元采纳,获得10
9秒前
完美世界应助彬子采纳,获得10
10秒前
迷米完成签到,获得积分10
12秒前
13秒前
14秒前
搜集达人应助欢呼的铅笔采纳,获得10
15秒前
347应助David采纳,获得10
17秒前
一二三发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
清脆的猕猴桃完成签到,获得积分10
20秒前
N7发布了新的文献求助10
23秒前
24秒前
liangliu发布了新的文献求助10
24秒前
24秒前
24秒前
爆米花应助一二三采纳,获得10
25秒前
慕青应助Marlatinda采纳,获得10
28秒前
28秒前
Zoom发布了新的文献求助10
30秒前
30秒前
32秒前
Zoom发布了新的文献求助10
32秒前
34秒前
35秒前
大模型应助威武冰淇淋采纳,获得10
37秒前
Superman发布了新的文献求助10
37秒前
39秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421494
求助须知:如何正确求助?哪些是违规求助? 3022225
关于积分的说明 8899644
捐赠科研通 2709464
什么是DOI,文献DOI怎么找? 1485778
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681980