Comprehensive Machine Learning Prediction of Extensive Enzymatic Reactions

人工智能 人工神经网络 机器学习 计算机科学 训练集 生化工程 工程类
作者
Naoki Watanabe,Masaki Yamamoto,Masahiro Murata,Christopher J. Vavricka,Chiaki Ogino,Akihiko Kondo,Michihiro Araki
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (36): 6762-6770 被引量:10
标识
DOI:10.1021/acs.jpcb.2c03287
摘要

New enzyme functions exist within the increasing number of unannotated protein sequences. Novel enzyme discovery is necessary to expand the pathways that can be accessed by metabolic engineering for the biosynthesis of functional compounds. Accordingly, various machine learning models have been developed to predict enzymatic reactions. However, the ability to predict unknown reactions that are not included in the training data has not been clarified. In order to cover uncertain and unknown reactions, a wider range of reaction types must be demonstrated by the models. Here, we establish 16 expanded enzymatic reaction prediction models developed using various machine learning algorithms, including deep neural network. Improvements in prediction performances over that of our previous study indicate that the updated methods are more effective for the prediction of enzymatic reactions. Overall, the deep neural network model trained with combined substrate–enzyme–product information exhibits the highest prediction accuracy with Macro F1 scores up to 0.966 and with robust prediction of unknown enzymatic reactions that are not included in the training data. This model can predict more extensive enzymatic reactions in comparison to previously reported models. This study will facilitate the discovery of new enzymes for the production of useful substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jinyue完成签到,获得积分10
2秒前
hh发布了新的文献求助10
3秒前
5秒前
lc完成签到,获得积分10
7秒前
10秒前
李健的小迷弟应助anna采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
13秒前
嘀嘀咕咕发布了新的文献求助10
13秒前
大观天下完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
兴奋千兰发布了新的文献求助10
16秒前
有机发布了新的文献求助10
17秒前
yukang发布了新的文献求助10
17秒前
19秒前
大观天下发布了新的文献求助30
20秒前
20秒前
22秒前
23秒前
小盘子完成签到,获得积分10
23秒前
24秒前
今后应助务实的大神采纳,获得10
24秒前
anna发布了新的文献求助10
27秒前
27秒前
Elaine完成签到,获得积分10
27秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073