Comprehensive Machine Learning Prediction of Extensive Enzymatic Reactions

人工智能 人工神经网络 机器学习 计算机科学 训练集 生化工程 工程类
作者
Naoki Watanabe,Masaki Yamamoto,Masahiro Murata,Christopher J. Vavricka,Chiaki Ogino,Akihiko Kondo,Michihiro Araki
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (36): 6762-6770 被引量:10
标识
DOI:10.1021/acs.jpcb.2c03287
摘要

New enzyme functions exist within the increasing number of unannotated protein sequences. Novel enzyme discovery is necessary to expand the pathways that can be accessed by metabolic engineering for the biosynthesis of functional compounds. Accordingly, various machine learning models have been developed to predict enzymatic reactions. However, the ability to predict unknown reactions that are not included in the training data has not been clarified. In order to cover uncertain and unknown reactions, a wider range of reaction types must be demonstrated by the models. Here, we establish 16 expanded enzymatic reaction prediction models developed using various machine learning algorithms, including deep neural network. Improvements in prediction performances over that of our previous study indicate that the updated methods are more effective for the prediction of enzymatic reactions. Overall, the deep neural network model trained with combined substrate–enzyme–product information exhibits the highest prediction accuracy with Macro F1 scores up to 0.966 and with robust prediction of unknown enzymatic reactions that are not included in the training data. This model can predict more extensive enzymatic reactions in comparison to previously reported models. This study will facilitate the discovery of new enzymes for the production of useful substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助YuGe采纳,获得20
刚刚
刚刚
斯文败类应助加减乘除采纳,获得10
1秒前
朱晖发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
小马甲应助就叫十一吧采纳,获得10
2秒前
goblue完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
2R完成签到,获得积分10
3秒前
3秒前
江湖小刀发布了新的文献求助10
4秒前
李爱国应助yue采纳,获得10
4秒前
5秒前
跳跃飞瑶发布了新的文献求助10
5秒前
5秒前
5秒前
OriC发布了新的文献求助10
5秒前
5秒前
5秒前
skjjj发布了新的文献求助10
5秒前
danyang发布了新的文献求助10
6秒前
7秒前
燕子归来发布了新的文献求助10
7秒前
phoebe完成签到,获得积分10
7秒前
8秒前
8秒前
步真宁发布了新的文献求助10
8秒前
小许小许完成签到,获得积分10
9秒前
研友_Z63G18发布了新的文献求助10
10秒前
orixero应助小菀儿采纳,获得10
10秒前
LSF发布了新的文献求助10
11秒前
11秒前
11秒前
麦克尔发布了新的文献求助10
12秒前
12秒前
LLF发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769283
求助须知:如何正确求助?哪些是违规求助? 5579143
关于积分的说明 15421126
捐赠科研通 4902990
什么是DOI,文献DOI怎么找? 2638048
邀请新用户注册赠送积分活动 1585929
关于科研通互助平台的介绍 1541056