亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma

医学 胰腺导管腺癌 接收机工作特性 逻辑回归 腺癌 淋巴结 转移 无线电技术 比例危险模型 放射科 肿瘤科 胰腺癌 内科学 癌症
作者
Yun Bian,Zhilin Zheng,Xu Fang,Hui Jiang,Mengmeng Zhu,Jieyu Yu,Haiyan Zhao,Ling Zhang,Jiawen Yao,Le Lü,Jianping Lu,Chengwei Shao
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 160-169 被引量:59
标识
DOI:10.1148/radiol.220329
摘要

Background Although deep learning has brought revolutionary changes in health care, reliance on manually selected cross-sectional images and segmentation remain methodological barriers. Purpose To develop and validate an automated preoperative artificial intelligence (AI) algorithm for tumor and lymph node (LN) segmentation with CT imaging for prediction of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and Methods In this retrospective study, patients with surgically resected, pathologically confirmed PDAC underwent multidetector CT from January 2015 to April 2020. Three models were developed, including an AI model, a clinical model, and a radiomics model. CT-determined LN metastasis was diagnosed by radiologists. Multivariable logistic regression analysis was conducted to develop the clinical and radiomics models. The performance of the models was determined on the basis of their discrimination and clinical utility. Kaplan-Meier curves, the log-rank test, or Cox regression were used for survival analysis. Results Overall, 734 patients (mean age, 62 years ± 9 [SD]; 453 men) were evaluated. All patients were split into training (n = 545) and validation (n = 189) sets. Patients who had LN metastasis (LN-positive group) accounted for 340 of 734 (46%) patients. In the training set, the AI model showed the highest performance (area under the receiver operating characteristic curve [AUC], 0.91) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.58, 0.76, and 0.71, respectively. In the validation set, the AI model showed the highest performance (AUC, 0.92) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.65, 0.77, and 0.68, respectively (P < .001). AI model-predicted positive LN metastasis was associated with worse survival (hazard ratio, 1.46; 95% CI: 1.13, 1.89; P = .004). Conclusion An artificial intelligence model outperformed radiologists and clinical and radiomics models for prediction of lymph node metastasis at CT in patients with pancreatic ductal adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的醉波完成签到,获得积分10
刚刚
sobergod完成签到 ,获得积分10
3秒前
平日裤子完成签到 ,获得积分10
16秒前
ZSJ发布了新的文献求助10
31秒前
32秒前
共享精神应助ZSJ采纳,获得10
35秒前
zhangxr发布了新的文献求助10
36秒前
47秒前
今后应助一啊鸭采纳,获得10
47秒前
撸起袖子加油干完成签到,获得积分10
52秒前
小骆发布了新的文献求助10
52秒前
luv发布了新的文献求助50
53秒前
一方完成签到 ,获得积分10
56秒前
隐形曼青应助小骆采纳,获得10
59秒前
_Charmo发布了新的文献求助30
1分钟前
阿文发布了新的文献求助10
1分钟前
1分钟前
sora98完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ZSJ发布了新的文献求助10
1分钟前
picapica668发布了新的文献求助10
1分钟前
韩十四完成签到 ,获得积分10
1分钟前
tata0215完成签到 ,获得积分10
1分钟前
又村完成签到 ,获得积分10
1分钟前
Singularity应助ZSJ采纳,获得10
1分钟前
CodeCraft应助ZSJ采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Carrots发布了新的文献求助10
1分钟前
小骆发布了新的文献求助10
1分钟前
LJYang完成签到,获得积分10
2分钟前
2分钟前
心灵美鑫完成签到 ,获得积分10
2分钟前
2分钟前
LJYang发布了新的文献求助30
2分钟前
548146完成签到,获得积分10
2分钟前
cy发布了新的文献求助10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139515
求助须知:如何正确求助?哪些是违规求助? 2790418
关于积分的说明 7795109
捐赠科研通 2446823
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146