Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma

医学 胰腺导管腺癌 接收机工作特性 逻辑回归 腺癌 淋巴结 转移 无线电技术 比例危险模型 放射科 肿瘤科 胰腺癌 内科学 癌症
作者
Yun Bian,Zhilin Zheng,Xu Fang,Hui Jiang,Mengmeng Zhu,Jieyu Yu,Haiyan Zhao,Ling Zhang,Jiawen Yao,Le Lü,Jianping Lu,Chengwei Shao
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 160-169 被引量:67
标识
DOI:10.1148/radiol.220329
摘要

Background Although deep learning has brought revolutionary changes in health care, reliance on manually selected cross-sectional images and segmentation remain methodological barriers. Purpose To develop and validate an automated preoperative artificial intelligence (AI) algorithm for tumor and lymph node (LN) segmentation with CT imaging for prediction of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and Methods In this retrospective study, patients with surgically resected, pathologically confirmed PDAC underwent multidetector CT from January 2015 to April 2020. Three models were developed, including an AI model, a clinical model, and a radiomics model. CT-determined LN metastasis was diagnosed by radiologists. Multivariable logistic regression analysis was conducted to develop the clinical and radiomics models. The performance of the models was determined on the basis of their discrimination and clinical utility. Kaplan-Meier curves, the log-rank test, or Cox regression were used for survival analysis. Results Overall, 734 patients (mean age, 62 years ± 9 [SD]; 453 men) were evaluated. All patients were split into training (n = 545) and validation (n = 189) sets. Patients who had LN metastasis (LN-positive group) accounted for 340 of 734 (46%) patients. In the training set, the AI model showed the highest performance (area under the receiver operating characteristic curve [AUC], 0.91) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.58, 0.76, and 0.71, respectively. In the validation set, the AI model showed the highest performance (AUC, 0.92) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.65, 0.77, and 0.68, respectively (P < .001). AI model-predicted positive LN metastasis was associated with worse survival (hazard ratio, 1.46; 95% CI: 1.13, 1.89; P = .004). Conclusion An artificial intelligence model outperformed radiologists and clinical and radiomics models for prediction of lymph node metastasis at CT in patients with pancreatic ductal adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ruochenzu完成签到,获得积分10
3秒前
4秒前
vv完成签到,获得积分10
4秒前
么一嗷喵完成签到,获得积分10
5秒前
卞卞完成签到,获得积分10
5秒前
冰兰发布了新的文献求助50
9秒前
9秒前
ruochenzu发布了新的文献求助10
10秒前
EthanChan完成签到,获得积分10
10秒前
12秒前
科研通AI2S应助vv采纳,获得10
13秒前
13秒前
诸葛小哥哥完成签到 ,获得积分10
13秒前
liuwei发布了新的文献求助30
13秒前
上官若男应助HongJiang采纳,获得10
13秒前
14秒前
Panchael发布了新的文献求助10
15秒前
张菲菲发布了新的文献求助30
18秒前
19秒前
锦秋完成签到 ,获得积分10
20秒前
WNing发布了新的文献求助10
21秒前
23秒前
lin应助科研通管家采纳,获得10
26秒前
美好乐松应助科研通管家采纳,获得10
26秒前
美好乐松应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
劲秉应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
美好乐松应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
lin应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
贰鸟应助科研通管家采纳,获得20
27秒前
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672688
求助须知:如何正确求助?哪些是违规求助? 3228855
关于积分的说明 9782298
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610759
邀请新用户注册赠送积分活动 760719
科研通“疑难数据库(出版商)”最低求助积分说明 736198