分离器(采油)
热稳定性
聚丙烯酸
化学工程
化学
金属
表面改性
法拉第效率
金属有机骨架
电极
材料科学
无机化学
聚合物
有机化学
电化学
吸附
物理化学
热力学
物理
工程类
作者
Jiaqi Li,Long Chen,Fengling Wang,Zuoyu Qin,Ying Zhang,Ning Zhang,Xiaohe Liu,Gen Chen
标识
DOI:10.1016/j.cej.2022.138536
摘要
Low lithium ion (Li+) mobility and thermal stability of polyolefin separator are crucial obstacles that limit the utilization of Li metal electrodes in the age of rapid acceleration toward high-energy-density rechargeable batteries. Herein, we report anionic metal-organic frameworks (MOFs) modified separator to overcome the barriers. By grafting –SO3− group onto the Universitetet i Oslo (UIO) structure, the anionic MOFs nanoparticles are synthesized (noted as UIO-SOLi). The UIO-SOLi is adhered on the surface of Celgard 2400 via polyacrylic acid (PAA) to fabricate the modified separator (UIOSOL@PP). The MOFs coating optimizes the wettability and thermal stability of the pristine separator. Negatively charged moieties –SO3− within the pore surface electrostatically repel anions while facilitate the transport of Li+, thus achieving a high Li+ transference number (tLi+) of 0.82. The effective Li+ transport relieves the concentration polarization, regulates the Li+ flow and realizes the uniform deposition of lithium. By implementing the UIOSOL@PP separator, the LiFePO4|Li cells deliver superior rate performance and cycling lifespan that renders a high discharge capacity retention of 155 mAh g−1 over 600 cycles at 1C. These results indicate that anionic MOFs modified separator is a promising strategy to modulate Li+ flow and assist with efficient long-term operation of lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI