Enhanced Photocatalytic Efficiency in Visible-Light-Induced NADH Regeneration by Intramolecular Electron Transfer

电子转移 光化学 光催化 分子内力 人工光合作用 材料科学 水溶液 光电流 氧化还原 化学 催化作用 有机化学 光电子学
作者
Xiewen Wu,Song Wang,Jing Fang,Hui Chen,Hongbo Liu,Run Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (34): 38895-38904 被引量:24
标识
DOI:10.1021/acsami.2c11174
摘要

Inspired by natural photosynthesis, photocatalytic NADH regeneration has drawn increasing interest in the recent decade as it provides a perfect approach for NAD+ reduction into NADH, which can be further consumed by oxidordeuctase for enzymatic redox reactions. However, two issues still remain unsolved in this procedure. First, the photocatalytic efficiency in NAD+ hydrogenation requires further improvement. Second, the rhodium electron mediator [Cp*Rh(bpy)H2O]2+ (M), which is always required for selective 1,4-NADH regeneration, is difficult to recover because of its good solubility in aqueous solution. Given the high price of M, it is highly wasteful and inefficient if it only spends once. Here, we report a Cp*Rh(bpy)Cl implanted conjugated microporous polymer DTS/Rh@CMPs which can be employed as a highly effective visible light photocatalysts for in situ NADH regeneration without using additional M. In addition, the insertion of Rh complex into a polymer skeleton, as demonstrated in UV-vis, fluorescence, photocurrent and electrochemical impedance, dramatically improves the light absorption capacity and the electron separation and transfer efficiency. Compared with that of DTS@CMP-1 with M, an enhanced reaction yield of 33% was determined in DTS/Rh@CMP-1 suggesting that intramolecular electron transfer has a better activity than that of intermolecular electron transfer in photocatalytic NAD+ reduction. Moreover, as the Rh complex is rooted firmly in a polymer framework, negligible Rh loss and conversion decrease in NADH regeneration are observed. When the DTS/Rh@CMP-1 was coupled with yeast alcohol dehydrogenase (YADH, from Saccharomyces cerevisiae), 1.36 mM of methanol was accumulated, implying an excellent biocompatibility of DTS/Rh@CMP-1 and a high feasibility of photobiocatalysis for formaldehyde hydrogenation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的半凡完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
1秒前
Answer完成签到,获得积分10
1秒前
诚心凝旋发布了新的文献求助10
1秒前
孟柠柠完成签到,获得积分10
2秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
SYLH应助di采纳,获得10
3秒前
韭菜盒子完成签到,获得积分20
3秒前
3秒前
4秒前
饭小心发布了新的文献求助10
4秒前
tanjianxin完成签到,获得积分10
4秒前
wanci应助帅玉玉采纳,获得10
4秒前
Ellie完成签到 ,获得积分10
4秒前
晴天完成签到 ,获得积分10
5秒前
123完成签到,获得积分10
5秒前
5秒前
EOFG0PW发布了新的文献求助10
6秒前
buno应助yug采纳,获得10
6秒前
hgh完成签到,获得积分10
6秒前
001关闭了001文献求助
7秒前
研友_VZG7GZ应助Fareth采纳,获得10
7秒前
8秒前
韭菜盒子发布了新的文献求助10
8秒前
8秒前
大意的安白完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
学术蟑螂完成签到,获得积分10
9秒前
9秒前
9秒前
兴奋冷松完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
饭小心完成签到,获得积分20
10秒前
luodd完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740