材料科学
离子电导率
成核
微晶
电解质
电镀(地质)
电导率
锂(药物)
离子键合
分子动力学
化学物理
微观结构
离子
化学工程
热力学
冶金
物理化学
化学
计算化学
电极
医学
内分泌学
工程类
地质学
物理
有机化学
地球物理学
作者
Lorena Alzate-Vargas,K.S.N. Vikrant,Srikanth Allu,Jean‐Luc Fattebert
出处
期刊:Physical Review Materials
[American Physical Society]
日期:2022-09-09
卷期号:6 (9)
被引量:8
标识
DOI:10.1103/physrevmaterials.6.095402
摘要
The formation and degradation of the solid electrolyte interphase (SEI) and its underlying transport properties play an essential role in the overall performance of lithium-ion batteries. This paper presents classical molecular dynamics studies on polycrystalline inorganic lithium fluoride (LiF) layers to model and predict the SEI transport properties. The ionic conductivity is obtained from the lithium-ion diffusivity in polycrystalline structures of LiF using the Nernst-Einstein relation. The predicted molecular dynamics data are used in a continuum scale phase-field model to evaluate the plating kinetics under fast charging conditions. The analysis emphasizes that the SEI ionic conductivity properties impact the plating dynamics, where SEI's low ion conductivity value is prone to large plating and subsequent capacity degradation. The combination of atomic and continuum scale studies shown herein lays a foundation to tune in SEI transport properties to decrease the amount of lithium plating and improve the performance of fast-charging batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI