Cloud-YLung for Non-Small Cell Lung Cancer Histology Classification from 3D Computed Tomography Whole-Lung Scans

肺癌 腺癌 放射科 计算机科学 医学 卷积神经网络 结核(地质) 人工智能 病理 癌症 内科学 生物 古生物学
作者
Selene Tomassini,Nicola Falcionelli,Paolo Sernani,Agnese Sbrollini,Micaela Morettini,Laura Burattini,Aldo Franco Dragoni
标识
DOI:10.1109/embc48229.2022.9871378
摘要

Non-Small Cell Lung Cancer (NSCLC) represents up to 85% of all malignant lung nodules. Adenocarcinoma and squamous cell carcinoma account for 90% of all NSCLC histotypes. The standard diagnostic procedure for NSCLC histotype characterization implies cooperation of 3D Computed Tomography (CT), especially in the form of low-dose CT, and lung biopsy. Since lung biopsy is invasive and challenging (especially for deeply-located lung cancers and for those close to blood vessels or airways), there is the necessity to develop non-invasive procedures for NSCLC histology classification. Thus, this study aims to propose Cloud-YLung for NSCLC histology classification directly from 3D CT whole-lung scans. With this aim, data were selected from the openly-accessible NSCLC-Radiomics dataset and a modular pipeline was designed. Automatic feature extraction and classification were accomplished by means of a Convolutional Long Short-Term Memory (ConvLSTM)-based neural network trained from scratch on a scalable GPU cloud service to ensure a machine-independent reproducibility of the entire framework. Results show that Cloud- YLung performs well in discriminating both NSCLC histotypes, achieving a test accuracy of 75% and AUC of 84%. Cloud-YLung is not only lung nodule segmentation free but also the first that makes use of a ConvLSTM-based neural network to automatically extract high-throughput features from 3D CT whole-lung scans and classify them. Clinical relevance- Cloud-YLung is a promising framework to non-invasively classify NSCLC histotypes. Preserving the lung anatomy, its application could be extended to other pulmonary pathologies using 3D CT whole-lung scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙秋梅发布了新的文献求助10
刚刚
1秒前
1秒前
rythm完成签到,获得积分10
2秒前
3秒前
Akim应助简单的八宝粥采纳,获得10
3秒前
扬大小汤发布了新的文献求助10
4秒前
何糖发布了新的文献求助10
4秒前
drwlr完成签到,获得积分10
4秒前
5秒前
赵坤煊完成签到 ,获得积分10
5秒前
5秒前
5秒前
危机的茗发布了新的文献求助10
6秒前
完美世界应助lili-采纳,获得10
6秒前
不安河水发布了新的文献求助10
6秒前
田様应助mljever采纳,获得10
8秒前
酷酷含烟发布了新的文献求助20
9秒前
9秒前
通义千问发布了新的文献求助10
9秒前
10秒前
10秒前
小蘑菇应助千帆过采纳,获得30
10秒前
11秒前
之星君完成签到,获得积分10
12秒前
asd发布了新的文献求助20
13秒前
13秒前
阳光访波发布了新的文献求助20
13秒前
墨韵完成签到,获得积分10
15秒前
羽言发布了新的文献求助10
16秒前
梁朝伟应助清漪采纳,获得20
17秒前
DSG应助小青龙必胜采纳,获得10
20秒前
22秒前
小迪应助六六大顺采纳,获得20
24秒前
花啊拾肆完成签到,获得积分10
24秒前
Jason应助仙女采纳,获得10
25秒前
猪猪发布了新的文献求助10
27秒前
脑洞疼应助Tobee采纳,获得10
27秒前
完美世界应助花啊拾肆采纳,获得10
28秒前
33秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421565
求助须知:如何正确求助?哪些是违规求助? 3022241
关于积分的说明 8899825
捐赠科研通 2709485
什么是DOI,文献DOI怎么找? 1485850
科研通“疑难数据库(出版商)”最低求助积分说明 686903
邀请新用户注册赠送积分活动 681999