肺癌
腺癌
放射科
肺
计算机科学
医学
卷积神经网络
结核(地质)
人工智能
病理
癌症
内科学
生物
古生物学
作者
Selene Tomassini,Nicola Falcionelli,Paolo Sernani,Agnese Sbrollini,Micaela Morettini,Laura Burattini,Aldo Franco Dragoni
标识
DOI:10.1109/embc48229.2022.9871378
摘要
Non-Small Cell Lung Cancer (NSCLC) represents up to 85% of all malignant lung nodules. Adenocarcinoma and squamous cell carcinoma account for 90% of all NSCLC histotypes. The standard diagnostic procedure for NSCLC histotype characterization implies cooperation of 3D Computed Tomography (CT), especially in the form of low-dose CT, and lung biopsy. Since lung biopsy is invasive and challenging (especially for deeply-located lung cancers and for those close to blood vessels or airways), there is the necessity to develop non-invasive procedures for NSCLC histology classification. Thus, this study aims to propose Cloud-YLung for NSCLC histology classification directly from 3D CT whole-lung scans. With this aim, data were selected from the openly-accessible NSCLC-Radiomics dataset and a modular pipeline was designed. Automatic feature extraction and classification were accomplished by means of a Convolutional Long Short-Term Memory (ConvLSTM)-based neural network trained from scratch on a scalable GPU cloud service to ensure a machine-independent reproducibility of the entire framework. Results show that Cloud- YLung performs well in discriminating both NSCLC histotypes, achieving a test accuracy of 75% and AUC of 84%. Cloud-YLung is not only lung nodule segmentation free but also the first that makes use of a ConvLSTM-based neural network to automatically extract high-throughput features from 3D CT whole-lung scans and classify them. Clinical relevance- Cloud-YLung is a promising framework to non-invasively classify NSCLC histotypes. Preserving the lung anatomy, its application could be extended to other pulmonary pathologies using 3D CT whole-lung scans.
科研通智能强力驱动
Strongly Powered by AbleSci AI