Cloud-YLung for Non-Small Cell Lung Cancer Histology Classification from 3D Computed Tomography Whole-Lung Scans

肺癌 腺癌 放射科 计算机科学 医学 卷积神经网络 结核(地质) 人工智能 病理 癌症 内科学 生物 古生物学
作者
Selene Tomassini,Nicola Falcionelli,Paolo Sernani,Agnese Sbrollini,Micaela Morettini,Laura Burattini,Aldo Franco Dragoni
标识
DOI:10.1109/embc48229.2022.9871378
摘要

Non-Small Cell Lung Cancer (NSCLC) represents up to 85% of all malignant lung nodules. Adenocarcinoma and squamous cell carcinoma account for 90% of all NSCLC histotypes. The standard diagnostic procedure for NSCLC histotype characterization implies cooperation of 3D Computed Tomography (CT), especially in the form of low-dose CT, and lung biopsy. Since lung biopsy is invasive and challenging (especially for deeply-located lung cancers and for those close to blood vessels or airways), there is the necessity to develop non-invasive procedures for NSCLC histology classification. Thus, this study aims to propose Cloud-YLung for NSCLC histology classification directly from 3D CT whole-lung scans. With this aim, data were selected from the openly-accessible NSCLC-Radiomics dataset and a modular pipeline was designed. Automatic feature extraction and classification were accomplished by means of a Convolutional Long Short-Term Memory (ConvLSTM)-based neural network trained from scratch on a scalable GPU cloud service to ensure a machine-independent reproducibility of the entire framework. Results show that Cloud- YLung performs well in discriminating both NSCLC histotypes, achieving a test accuracy of 75% and AUC of 84%. Cloud-YLung is not only lung nodule segmentation free but also the first that makes use of a ConvLSTM-based neural network to automatically extract high-throughput features from 3D CT whole-lung scans and classify them. Clinical relevance- Cloud-YLung is a promising framework to non-invasively classify NSCLC histotypes. Preserving the lung anatomy, its application could be extended to other pulmonary pathologies using 3D CT whole-lung scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助maohuibai采纳,获得10
刚刚
yangmingyu发布了新的文献求助10
刚刚
CodeCraft应助郝从安采纳,获得30
1秒前
颜绮发布了新的文献求助10
1秒前
2秒前
LL发布了新的文献求助10
2秒前
sen完成签到 ,获得积分20
3秒前
斯文败类应助静谧_无华采纳,获得20
3秒前
高兴帅哥发布了新的文献求助10
3秒前
bobo完成签到,获得积分10
3秒前
4秒前
4秒前
111发布了新的文献求助10
4秒前
田様应助企鹅QQ采纳,获得10
5秒前
zhuyinghao完成签到,获得积分10
5秒前
mjw完成签到,获得积分10
5秒前
浅各完成签到,获得积分10
8秒前
8秒前
8秒前
blind应助愉快的芒果采纳,获得10
8秒前
8秒前
笑点低的幼翠完成签到,获得积分10
8秒前
FRANKFANG发布了新的文献求助10
9秒前
Simmy应助丁一采纳,获得10
10秒前
CHY发布了新的文献求助10
10秒前
springkaka完成签到,获得积分0
10秒前
可爱的函函应助yyy采纳,获得10
11秒前
方又亦完成签到,获得积分10
11秒前
小蘑菇应助yyy采纳,获得10
11秒前
CodeCraft应助无私的大白采纳,获得50
11秒前
12秒前
风夏完成签到,获得积分10
13秒前
怕孤单的Hannah完成签到 ,获得积分10
13秒前
攒星星发布了新的文献求助10
13秒前
14秒前
14秒前
繁荣的代秋完成签到 ,获得积分10
15秒前
爱吃冬瓜发布了新的文献求助10
15秒前
15秒前
浅各发布了新的文献求助10
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975