Directed Evolution and Computational Modeling of Galactose Oxidase toward Bulky Benzylic and Alkyl Secondary Alcohols

烷基 化学 生物催化 定向进化 生物信息学 基质(水族馆) 组合化学 立体化学 催化作用 有机化学 生物化学 突变体 反应机理 生物 基因 生态学
作者
Wan Lin Yeo,Dillon W. P. Tay,Jhoann M.T. Miyajima,Shreyas Supekar,Tong Mei Teh,Jin Xu,Yee Ling Tan,Jie Yang See,Hao Fan,Sebastian Maurer‐Stroh,Yee Hwee Lim,Ee Lui Ang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (24): 16088-16096 被引量:3
标识
DOI:10.1021/acscatal.3c03427
摘要

In the field of alcohol oxidation, galactose oxidase (GOase) is one of the most established enzymes capable of this important chemical transformation under benign conditions. However, the applicability of GOase toward more complex molecules such as those frequently found in the pharmaceutical or agrochemical industries remains restricted. Here, by employing a combined approach of directed evolution and computational modeling, we have identified improved GOases with significantly expanded substrate specificity toward both bulky benzylic and alkyl secondary alcohols, showing activity enhancements of up to 2400-fold compared to the reported benchmark M3-5 mutant. Beneficial mutations conveying relaxed substrate enantioselectivity biases (R/S ratios down to 1.05) and higher thermostabilities (up to 1.6-fold improvement in residual activity versus benchmark) have also been identified. We have applied computational tools YASARA, FoldX, SCWRL, and Glide to show reasonable correlation with features related to GOase structure, protein stability, and catalytic activity. The generated enzyme activity models based on MM/GBSA (r = −0.85) and YASARA (r = −0.89) have successfully predicted the activity trend of a family of related substrates based on the 1-phenyl-1-alkyl alcohol scaffold with varying alkyl chain lengths. Together with curated experimental data sets and further optimization of these in silico models, these approaches can serve as gateway to explore desirable enzyme characteristics, establish enzyme substrate scopes, and accelerate biocatalyst development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
energetic关注了科研通微信公众号
刚刚
yxf完成签到,获得积分10
刚刚
egoistMM完成签到,获得积分10
1秒前
我心飞翔完成签到 ,获得积分10
2秒前
2秒前
3秒前
Somogyis发布了新的文献求助10
3秒前
lylyspeechless完成签到,获得积分10
4秒前
胡楠完成签到,获得积分10
5秒前
5秒前
5秒前
JY'完成签到,获得积分10
6秒前
黄黄完成签到,获得积分10
6秒前
现实的飞风完成签到,获得积分10
7秒前
Aipoi发布了新的文献求助10
10秒前
neu_zxy1991完成签到,获得积分10
10秒前
xiaoblue完成签到,获得积分10
13秒前
梅子完成签到 ,获得积分10
13秒前
Aipoi完成签到,获得积分10
14秒前
14秒前
Ccddxx完成签到,获得积分10
14秒前
666完成签到,获得积分10
15秒前
15秒前
16秒前
GankhuyagJavzan完成签到,获得积分10
16秒前
17秒前
Ava应助Lyd采纳,获得10
17秒前
17秒前
ll发布了新的文献求助10
17秒前
冷阳发布了新的文献求助20
18秒前
翧礼完成签到,获得积分10
19秒前
李海乐发布了新的文献求助10
19秒前
20秒前
SYX发布了新的文献求助10
22秒前
友好的牛排完成签到,获得积分0
23秒前
Dxy-TOFA完成签到,获得积分10
23秒前
energetic发布了新的文献求助10
24秒前
SYX完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554