Enhancing heat-exchanger performance in frost conditions via superhydrophobic surface modification

霜冻(温度) 热交换器 材料科学 表面改性 机械工程 复合材料 环境科学 工程类
作者
Hui He,Xiyuan Zhou,Ning Lyu,Feng Wang,Caihua Liang,Xiaosong Zhang
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:: 122914-122914 被引量:3
标识
DOI:10.1016/j.applthermaleng.2024.122914
摘要

Frost accumulation significantly reduces the heat transfer efficiency of air source heat pump (ASHP) during winter operation, making frost suppression and defrosting critical issues that need to be addressed. This study presents a simple system optimization method that considers both active frost suppression and efficient low-temperature defrosting strategies to ensure prolonged efficient heat transfer. Heat exchangers with different surface properties (hydrophilic, hydrophobic, and superhydrophobic) were implemented, and the dynamics of frosting and defrosting processes were studied under high humidity conditions. The defrosting process employs low-temperature defrosting and quantitatively monitors heat transfer based on temperature differences, facilitating rapid defrosting in the event of a substantial decrease in heat transfer efficiency. Experimental results reveal distinct frost accumulation patterns between the fins, attributed to variations in freezing forms and surface properties of the droplets. The superhydrophobic heat exchanger ensures an effective heat exchange channel time of 25 min and 49 min longer than the hydrophobic heat exchanger and hydrophilic heat exchanger, respectively, showcasing excellent active frost suppression capability. After 90 min of frost accumulation, the defrost energy consumption of the superhydrophobic heat exchanger is 31.7% and 28.9% lower than that of the hydrophilic heat exchanger and hydrophobic heat exchanger, respectively. With the proposed defrosting strategy, the defrosting time of the superhydrophobic heat exchanger is reduced by 39% and 32.4%, and the heat gain is 11.7% and 11.3% higher than that of the hydrophobic and hydrophilic heat exchangers, respectively. Additionally, the superhydrophobic heat exchanger exhibits a 36.4% increase in heat gain compared to the conventional reverse cycle defrosting method. Additionally, in the cyclic frost-defrost study, the superhydrophobic heat exchanger maintained efficient heat transfer for 76.2% and 31.6% longer than the hydrophobic and hydrophilic heat exchangers, respectively. This prolonged efficiency is attributed to the effective drainage of water trapped on the fin surface. These findings underscore the potential of proposed defrosting strategies alongside dynamic studies of active surface frost suppression characteristics, offering significant energy-saving advantages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
NW18完成签到,获得积分10
7秒前
8秒前
打打应助CharlseFan采纳,获得10
9秒前
13秒前
领导范儿应助jeff采纳,获得10
13秒前
16秒前
丰富的小甜瓜完成签到,获得积分10
17秒前
18秒前
火山发布了新的文献求助10
22秒前
cquank完成签到 ,获得积分10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
哈哈嘿完成签到 ,获得积分10
28秒前
lcccc发布了新的文献求助20
28秒前
n张黎明完成签到,获得积分10
28秒前
123456发布了新的文献求助10
33秒前
ttgx完成签到,获得积分10
37秒前
38秒前
飓风完成签到 ,获得积分10
39秒前
41秒前
Niniiii发布了新的文献求助10
44秒前
777发布了新的文献求助10
44秒前
44秒前
小宝发布了新的文献求助10
44秒前
liyan发布了新的文献求助10
45秒前
青柳完成签到 ,获得积分10
47秒前
葡萄萄萄完成签到 ,获得积分10
47秒前
冰冰发布了新的文献求助10
49秒前
汉堡包应助虎虎采纳,获得10
53秒前
Niniiii完成签到,获得积分10
53秒前
夏来应助afar采纳,获得10
54秒前
58秒前
wanci应助笨蛋没烦恼采纳,获得10
59秒前
贪玩小小发布了新的文献求助10
1分钟前
1分钟前
上上谦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Second Language Writing (2nd Edition) by Ken Hyland, 2019 1000
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Eric Dunning and the Sociology of Sport 850
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2918176
求助须知:如何正确求助?哪些是违规求助? 2558909
关于积分的说明 6922735
捐赠科研通 2218608
什么是DOI,文献DOI怎么找? 1179166
版权声明 588520
科研通“疑难数据库(出版商)”最低求助积分说明 577030