The effective connectivity analysis of fMRI based on asymmetric detection of transfer brain entropy

格兰杰因果关系 功能磁共振成像 传递熵 神经科学 熵(时间箭头) 楔前 心理学 因果关系(物理学) 模式识别(心理学) 计算机科学 机器学习 人工智能 最大熵原理 物理 量子力学
作者
Yuhu Shi,Yidan Li
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (3) 被引量:2
标识
DOI:10.1093/cercor/bhae070
摘要

Abstract It is important to explore causal relationships in functional magnetic resonance imaging study. However, the traditional effective connectivity analysis method is easy to produce false causality, and the detection accuracy needs to be improved. In this paper, we introduce a novel functional magnetic resonance imaging effective connectivity method based on the asymmetry detection of transfer entropy, which quantifies the disparity in predictive information between forward and backward time, subsequently normalizing this disparity to establish a more precise criterion for detecting causal relationships while concurrently reducing computational complexity. Then, we evaluate the effectiveness of this method on the simulated data with different level of nonlinearity, and the results demonstrated that the proposed method outperforms others methods on the detection of both linear and nonlinear causal relationships, including Granger Causality, Partial Granger Causality, Kernel Granger Causality, Copula Granger Causality, and traditional transfer entropy. Furthermore, we applied it to study the effective connectivity of brain functional activities in seafarers. The results showed that there are significantly different causal relationships between different brain regions in seafarers compared with non-seafarers, such as Temporal lobe related to sound and auditory information processing, Hippocampus related to spatial navigation, Precuneus related to emotion processing as well as Supp_Motor_Area associated with motor control and coordination, which reflects the occupational specificity of brain function of seafarers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助文茵采纳,获得10
1秒前
英姑应助Lisztan采纳,获得10
1秒前
1秒前
ZeZeZe发布了新的文献求助10
1秒前
2秒前
ZZY发布了新的文献求助10
2秒前
jiangmj1990完成签到,获得积分10
2秒前
ys发布了新的文献求助10
3秒前
3秒前
Snowychen完成签到,获得积分10
3秒前
3秒前
cyy关闭了cyy文献求助
4秒前
Lin应助烂漫的弘文采纳,获得10
4秒前
朴实白卉完成签到,获得积分10
5秒前
坚强胡萝卜完成签到,获得积分10
5秒前
5秒前
科研通AI5应助wasiwan采纳,获得10
5秒前
oh发布了新的文献求助10
5秒前
6秒前
谦让凌兰完成签到,获得积分10
6秒前
ZeZeZe完成签到,获得积分20
6秒前
7秒前
jiangmj1990发布了新的文献求助30
7秒前
8秒前
王秋婷发布了新的文献求助10
9秒前
9秒前
9秒前
pphhhhaannn完成签到,获得积分10
9秒前
高兴的冰棍完成签到,获得积分10
9秒前
10秒前
10秒前
小马甲应助彩色的白秋采纳,获得10
10秒前
三七完成签到 ,获得积分10
11秒前
吃鸡蛋不吃黄完成签到,获得积分10
11秒前
Estrella应助123采纳,获得10
11秒前
11秒前
李健的小迷弟应助oh采纳,获得10
11秒前
阿飘应助孤鹜齐飞采纳,获得10
12秒前
小龙坎今天半价完成签到,获得积分10
12秒前
沐頭发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748398
求助须知:如何正确求助?哪些是违规求助? 3291329
关于积分的说明 10072748
捐赠科研通 3006983
什么是DOI,文献DOI怎么找? 1651482
邀请新用户注册赠送积分活动 786390
科研通“疑难数据库(出版商)”最低求助积分说明 751676