Multi-scale Structural Graph Convolutional Network for Skeleton-based Action Recognition

计算机科学 骨架(计算机编程) 动作识别 人工智能 模式识别(心理学) 图形 理论计算机科学 程序设计语言 班级(哲学)
作者
Sungjun Jang,Heansung Lee,Woo Jin Kim,Jungho Lee,Sungmin Woo,Sangyoun Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7244-7258 被引量:3
标识
DOI:10.1109/tcsvt.2024.3375512
摘要

Graph convolutional networks (GCNs) have attracted considerable interest in skeleton-based action recognition. Existing GCN-based models have proposed methods to learn dynamic graph topologies generated from the feature information of vertices to capture inherent relationships. However, these models have two main limitations. Firstly, they struggle to effectively utilize high-dimensional or structural information, which limits their capacity for feature representation and consequently hinders performance improvement. Secondly, among these models, the multi-scale methods that aggregate information at different scales often over-capture unnecessary relationships between vertices. This leads to an over-smoothing problem where smoothed features are extracted, making it difficult to distinguish the features of each vertex. To address these limitations, we propose the multi-scale structural graph convolutional network (MSS-GCN) for skeleton-based action recognition. Within the MSS-GCN framework, the common intersection graph convolution (CI-GC) leverages the overlapped neighbor information, indicating the overlap between neighboring vertices for a given pair of root vertices. The graph topology of CI-GC is designed to compute the structural correlation between neighboring vertices corresponding to each hop, thereby enriching the context of inter-vertex relationships. Then, our proposed multi-scale spatio-temporal modeling aggregates local-global features to provide a comprehensive representation. In addition, we propose a Graph Weight Annealing (GWA) method, which is a graph scheduling method to mitigate the over-smoothing caused by multi-scale aggregation. By varying the importance between a vertex and its neighbors, we demonstrate that the over-smoothing problem can be effectively mitigated. Moreover, our proposed GWA method can easily be adapted to different GCN models to enhance performance. Combining the MSS-GCN model and the GWA method, we propose a powerful feature extractor that effectively classifies actions for skeleton-based action recognition in various datasets. We evaluate our approach on three benchmark datasets: NTU RGB+D, NTU RGB+D 120, and NW-UCLA. The proposed MSS-GCN achieves state-of-the-art performance on all three datasets, further validating the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助舒适斑马采纳,获得10
刚刚
1秒前
叶子发布了新的文献求助10
2秒前
max2022发布了新的文献求助10
6秒前
小榔头关注了科研通微信公众号
8秒前
nidhhog发布了新的文献求助10
9秒前
开庆完成签到,获得积分10
9秒前
传奇3应助666采纳,获得10
10秒前
叶子完成签到,获得积分10
10秒前
舒适斑马完成签到,获得积分10
10秒前
11秒前
Chenzhs完成签到,获得积分10
11秒前
11秒前
东十八完成签到 ,获得积分10
13秒前
13秒前
雷锋发布了新的文献求助10
14秒前
十万八千完成签到,获得积分10
15秒前
lenny发布了新的文献求助10
18秒前
曾经的依风完成签到,获得积分10
19秒前
黑宝坨完成签到,获得积分10
21秒前
27秒前
呼呼啦啦完成签到,获得积分10
29秒前
牧云完成签到 ,获得积分10
30秒前
Raymond给桑榆未晚的求助进行了留言
31秒前
dawn发布了新的文献求助10
31秒前
peike完成签到,获得积分10
31秒前
jiajiajia发布了新的文献求助10
31秒前
32秒前
心灵美的修洁完成签到 ,获得积分10
32秒前
十公里发布了新的文献求助10
35秒前
vivi发布了新的文献求助10
36秒前
叶子发布了新的文献求助10
36秒前
愉快的哈密瓜完成签到,获得积分10
38秒前
善学以致用应助songf11采纳,获得10
39秒前
就叫希望吧完成签到 ,获得积分10
40秒前
iwhsgfes完成签到,获得积分10
41秒前
GEOPYJ完成签到,获得积分10
43秒前
sunglow11完成签到,获得积分0
44秒前
爆米花应助Tantantan采纳,获得10
46秒前
英姑应助chloe采纳,获得10
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760