Multi-scale Structural Graph Convolutional Network for Skeleton-based Action Recognition

计算机科学 骨架(计算机编程) 动作识别 人工智能 模式识别(心理学) 图形 理论计算机科学 程序设计语言 班级(哲学)
作者
Sungjun Jang,Heansung Lee,Woo Jin Kim,Jungho Lee,Sungmin Woo,Sangyoun Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7244-7258 被引量:3
标识
DOI:10.1109/tcsvt.2024.3375512
摘要

Graph convolutional networks (GCNs) have attracted considerable interest in skeleton-based action recognition. Existing GCN-based models have proposed methods to learn dynamic graph topologies generated from the feature information of vertices to capture inherent relationships. However, these models have two main limitations. Firstly, they struggle to effectively utilize high-dimensional or structural information, which limits their capacity for feature representation and consequently hinders performance improvement. Secondly, among these models, the multi-scale methods that aggregate information at different scales often over-capture unnecessary relationships between vertices. This leads to an over-smoothing problem where smoothed features are extracted, making it difficult to distinguish the features of each vertex. To address these limitations, we propose the multi-scale structural graph convolutional network (MSS-GCN) for skeleton-based action recognition. Within the MSS-GCN framework, the common intersection graph convolution (CI-GC) leverages the overlapped neighbor information, indicating the overlap between neighboring vertices for a given pair of root vertices. The graph topology of CI-GC is designed to compute the structural correlation between neighboring vertices corresponding to each hop, thereby enriching the context of inter-vertex relationships. Then, our proposed multi-scale spatio-temporal modeling aggregates local-global features to provide a comprehensive representation. In addition, we propose a Graph Weight Annealing (GWA) method, which is a graph scheduling method to mitigate the over-smoothing caused by multi-scale aggregation. By varying the importance between a vertex and its neighbors, we demonstrate that the over-smoothing problem can be effectively mitigated. Moreover, our proposed GWA method can easily be adapted to different GCN models to enhance performance. Combining the MSS-GCN model and the GWA method, we propose a powerful feature extractor that effectively classifies actions for skeleton-based action recognition in various datasets. We evaluate our approach on three benchmark datasets: NTU RGB+D, NTU RGB+D 120, and NW-UCLA. The proposed MSS-GCN achieves state-of-the-art performance on all three datasets, further validating the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙子完成签到 ,获得积分10
刚刚
1秒前
1秒前
福娃发布了新的文献求助10
1秒前
2秒前
达斯维完成签到,获得积分10
2秒前
浪迹天涯发布了新的文献求助10
2秒前
今后应助杜嘟嘟采纳,获得30
2秒前
3秒前
3秒前
清圆527完成签到,获得积分10
3秒前
JamesPei应助Zhong采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Emma完成签到 ,获得积分10
6秒前
6秒前
6秒前
清新的问枫完成签到,获得积分10
7秒前
7秒前
在水一方应助大方小白采纳,获得10
7秒前
阿凡达完成签到,获得积分10
7秒前
神勇的雅香应助大方小白采纳,获得10
7秒前
彬彬发布了新的文献求助10
7秒前
刘鹏宇发布了新的文献求助10
7秒前
斯文败类应助Stormi采纳,获得10
8秒前
9秒前
9秒前
木子发布了新的文献求助10
10秒前
yuyuyu完成签到 ,获得积分10
10秒前
10秒前
choi完成签到,获得积分10
10秒前
芒竹发布了新的文献求助10
10秒前
璐璐发布了新的文献求助10
10秒前
wwwww完成签到,获得积分10
11秒前
pearl发布了新的文献求助10
11秒前
一一完成签到,获得积分10
11秒前
李双艳发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740