MOF derived MnFeOX supported on carbon cloth as electrochemical anode for peroxymonosulfate electro-activation and persistent organic pollutants degradation

降级(电信) 阳极 化学 污染物 单线态氧 电化学 电极 总有机碳 化学工程 碳纤维 环境化学 材料科学 氧气 有机化学 复合材料 工程类 物理化学 复合数 电信 计算机科学
作者
Xiansheng Zhang,Yuan Pan,Yunze Wang,Ting Wu,Binbin Shao,Qingyun He,Lingfeng Zhou,Teng Li,Sheng Liu,Xinyi Huang,Zhifeng Liu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148646-148646 被引量:35
标识
DOI:10.1016/j.cej.2024.148646
摘要

In this work, metal–organic-framework (MOF) derived MnFeOX (MD-MnFeOX) was loaded onto carbon cloth (CC) formed MD-MnFeOX/CC anode. Subsequently, the ability of MD-MnFeOX/CC anode to electrochemically (EC) activate peroxymonosulfate (PMS) for the degradation of persistent organic pollutants was tested by introducing an electric field. The degradation results indicated that the MD-MnFeOX/CC/EC/PMS system had a degradation ability of 90.20 % for tetracycline (TC) within 20 min at a very low current density of 5 mA/cm2, which was significantly higher than that of CC/EC/PMS (53.75 %) and the reported conventional synthesized double transition metal oxide/EC/PMS electrocatalytic system. In addition, the system had excellent stability and low energy consumption (0.79 kWh/m3). The influencing factors of the degradation efficiency of the system were analyzed, and the degradation ability of the system in actual water bodies was tested. The results demonstrated that the system maintained a stable degradation efficiency in various influencing factors and actual water bodies, proving that the system could degrade organic pollutants in complex water bodies. Mechanistic analysis showed that singlet oxygen (1O2) played a dominant role in the MD-MnFeOX/CC/EC/PMS system. Finally, the pathway for TC degradation in this system was explored. This experiment provides an economically feasible method to improve the electrocatalytic performance of CC electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
ivy应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
喵酱完成签到,获得积分10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
敬老院N号应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得30
1秒前
淡定的思松应助ww采纳,获得10
1秒前
cxh发布了新的文献求助10
2秒前
2秒前
winstar完成签到,获得积分10
2秒前
Amai发布了新的文献求助20
3秒前
langzi发布了新的文献求助10
3秒前
ZH的天方夜谭完成签到,获得积分20
3秒前
酷波er应助Rrr采纳,获得10
3秒前
Rhodomyrtus关注了科研通微信公众号
3秒前
wei完成签到,获得积分10
4秒前
4秒前
Qinruirui完成签到,获得积分10
4秒前
Owen应助xia采纳,获得10
4秒前
ddy完成签到,获得积分10
5秒前
zmy发布了新的文献求助10
5秒前
鳗鱼厉发布了新的文献求助10
5秒前
孤存完成签到 ,获得积分10
5秒前
zho关闭了zho文献求助
5秒前
6秒前
8秒前
aaashirz_完成签到,获得积分10
8秒前
科研通AI2S应助风中寄云采纳,获得10
8秒前
coffeecup1完成签到,获得积分10
10秒前
萌萌许完成签到,获得积分10
10秒前
10秒前
斯文鸡完成签到,获得积分10
11秒前
萌萌完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794