Artificial Intelligence-Based Damage Identification Method Using Principal Component Analysis with Spatial and Multi-Scale Temporal Windows

主成分分析 比例(比率) 鉴定(生物学) 计算机科学 组分(热力学) 人工智能 模式识别(心理学) 数据挖掘 地图学 地理 植物 物理 生物 热力学
作者
Ge Zhang,Hui Sun,Zejia Liu,Licheng Zhou,Gongfa Chen,Liqun Tang,Fangsen Cui
出处
期刊:International Journal of Computational Methods [World Scientific]
被引量:2
标识
DOI:10.1142/s0219876223420033
摘要

Previous studies have demonstrated the superior damage identification performance of the double-window principal component analysis (DWPCA) method over traditional PCA methods and other traditional techniques, such as wavelet and regression analysis. DWPCA uses temporal windows to discriminate structural states and spatial windows to exclude damage-insensitive responses, making it more effective for damage identification. However, determining the optimal temporal window scale and its impact on damage identification performance still remains unclear. In this study, different scales of temporal windows, including yearly, seasonal and monthly windows, are employed to obtain corresponding damage features, i.e., eigenvectors derived from DWPCA. These damage-sensitive eigenvectors from various temporal windows are then used as inputs for artificial intelligence (AI) algorithms to localize and quantify damages. In this paper two types of AI algorithms are employed: random forest (RF) and bidirectional gated recurrent unit (BiGRU). A numerical study using a benchmark model is used to evaluate the contribution of the eigenvector of each temporal scale to damage identification. The results demonstrate that the combined DWPCA eigenvectors [Formula: see text] from the three temporal windows effectively enhance the AI-based damage identification capability. Besides, AI algorithm with [Formula: see text] can have high accuracy exceeding 95% under limited training data sets and strong noise. Additionally, when DWPCA eigenvectors from monthly or seasonal windows as inputs, which is both sensitive to damages and noise, the BiGRU also achieves high accuracy of over 90% for damage identification, due to its advantages in feature extraction. These findings suggest that the proposed approach has significant potential for real-life structural health monitoring applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢城发布了新的文献求助10
2秒前
GEeZiii完成签到,获得积分10
2秒前
小坤不慌完成签到 ,获得积分10
2秒前
凶狗碎大石完成签到,获得积分10
4秒前
4秒前
谢大喵发布了新的文献求助10
4秒前
风清扬发布了新的文献求助10
5秒前
Linda完成签到 ,获得积分10
6秒前
fanghaoxiang发布了新的文献求助30
6秒前
寻道图强应助HH采纳,获得30
7秒前
youyou发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
汉堡包应助dd采纳,获得10
8秒前
可爱的函函应助hugdoggy采纳,获得10
9秒前
9秒前
10秒前
10秒前
chaney完成签到 ,获得积分10
10秒前
一只龟龟完成签到,获得积分10
11秒前
Sjingjia发布了新的文献求助10
11秒前
追梦人发布了新的文献求助50
12秒前
12秒前
12秒前
keyanbaicai完成签到,获得积分10
12秒前
新1发布了新的文献求助10
13秒前
xcchh发布了新的文献求助10
13秒前
新1发布了新的文献求助10
13秒前
新1发布了新的文献求助10
13秒前
Hello应助风清扬采纳,获得10
13秒前
lingjunjie完成签到 ,获得积分10
14秒前
新1发布了新的文献求助10
14秒前
G18960完成签到,获得积分10
14秒前
新1发布了新的文献求助10
14秒前
新1发布了新的文献求助10
14秒前
瑞克八代完成签到,获得积分10
14秒前
chaney关注了科研通微信公众号
15秒前
欢城完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952