亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence-Based Damage Identification Method Using Principal Component Analysis with Spatial and Multi-Scale Temporal Windows

主成分分析 比例(比率) 鉴定(生物学) 计算机科学 组分(热力学) 人工智能 模式识别(心理学) 数据挖掘 地图学 地理 植物 物理 生物 热力学
作者
Ge Zhang,Hui Sun,Zejia Liu,Licheng Zhou,Gongfa Chen,Liqun Tang,Fangsen Cui
出处
期刊:International Journal of Computational Methods [World Scientific]
被引量:2
标识
DOI:10.1142/s0219876223420033
摘要

Previous studies have demonstrated the superior damage identification performance of the double-window principal component analysis (DWPCA) method over traditional PCA methods and other traditional techniques, such as wavelet and regression analysis. DWPCA uses temporal windows to discriminate structural states and spatial windows to exclude damage-insensitive responses, making it more effective for damage identification. However, determining the optimal temporal window scale and its impact on damage identification performance still remains unclear. In this study, different scales of temporal windows, including yearly, seasonal and monthly windows, are employed to obtain corresponding damage features, i.e., eigenvectors derived from DWPCA. These damage-sensitive eigenvectors from various temporal windows are then used as inputs for artificial intelligence (AI) algorithms to localize and quantify damages. In this paper two types of AI algorithms are employed: random forest (RF) and bidirectional gated recurrent unit (BiGRU). A numerical study using a benchmark model is used to evaluate the contribution of the eigenvector of each temporal scale to damage identification. The results demonstrate that the combined DWPCA eigenvectors [Formula: see text] from the three temporal windows effectively enhance the AI-based damage identification capability. Besides, AI algorithm with [Formula: see text] can have high accuracy exceeding 95% under limited training data sets and strong noise. Additionally, when DWPCA eigenvectors from monthly or seasonal windows as inputs, which is both sensitive to damages and noise, the BiGRU also achieves high accuracy of over 90% for damage identification, due to its advantages in feature extraction. These findings suggest that the proposed approach has significant potential for real-life structural health monitoring applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
菠萝发布了新的文献求助30
7秒前
8秒前
8秒前
欣喜石头完成签到 ,获得积分10
12秒前
大学生完成签到 ,获得积分10
19秒前
吃饱再睡完成签到 ,获得积分10
36秒前
魔幻安南完成签到 ,获得积分10
36秒前
小蘑菇应助Focus采纳,获得10
38秒前
40秒前
44秒前
44秒前
eazin完成签到 ,获得积分10
45秒前
47秒前
ying发布了新的文献求助10
49秒前
共享精神应助尹恩惠采纳,获得10
50秒前
Focus发布了新的文献求助10
50秒前
科研通AI5应助yulian采纳,获得10
50秒前
风花雪月完成签到 ,获得积分10
52秒前
Focus完成签到,获得积分20
57秒前
58秒前
fantianhui完成签到 ,获得积分10
58秒前
尹恩惠发布了新的文献求助10
1分钟前
枫叶完成签到 ,获得积分10
1分钟前
尹恩惠完成签到,获得积分10
1分钟前
1分钟前
呜呼完成签到,获得积分10
1分钟前
siqilinwillbephd完成签到 ,获得积分10
1分钟前
佐敦完成签到,获得积分10
1分钟前
wdd完成签到 ,获得积分10
1分钟前
lllkkk完成签到,获得积分20
1分钟前
keaid完成签到 ,获得积分10
1分钟前
纯情的无色完成签到 ,获得积分10
1分钟前
草上飞完成签到 ,获得积分10
1分钟前
cappuccino完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176