Artificial Intelligence-Based Damage Identification Method Using Principal Component Analysis with Spatial and Multi-Scale Temporal Windows

主成分分析 比例(比率) 鉴定(生物学) 计算机科学 组分(热力学) 人工智能 模式识别(心理学) 数据挖掘 地图学 地理 植物 物理 生物 热力学
作者
Ge Zhang,Hui Sun,Zejia Liu,Licheng Zhou,Gongfa Chen,Liqun Tang,Fangsen Cui
出处
期刊:International Journal of Computational Methods [World Scientific]
标识
DOI:10.1142/s0219876223420033
摘要

Previous studies have demonstrated the superior damage identification performance of the double-window principal component analysis (DWPCA) method over traditional PCA methods and other traditional techniques, such as wavelet and regression analysis. DWPCA uses temporal windows to discriminate structural states and spatial windows to exclude damage-insensitive responses, making it more effective for damage identification. However, determining the optimal temporal window scale and its impact on damage identification performance still remains unclear. In this study, different scales of temporal windows, including yearly, seasonal and monthly windows, are employed to obtain corresponding damage features, i.e., eigenvectors derived from DWPCA. These damage-sensitive eigenvectors from various temporal windows are then used as inputs for artificial intelligence (AI) algorithms to localize and quantify damages. In this paper two types of AI algorithms are employed: random forest (RF) and bidirectional gated recurrent unit (BiGRU). A numerical study using a benchmark model is used to evaluate the contribution of the eigenvector of each temporal scale to damage identification. The results demonstrate that the combined DWPCA eigenvectors [Formula: see text] from the three temporal windows effectively enhance the AI-based damage identification capability. Besides, AI algorithm with [Formula: see text] can have high accuracy exceeding 95% under limited training data sets and strong noise. Additionally, when DWPCA eigenvectors from monthly or seasonal windows as inputs, which is both sensitive to damages and noise, the BiGRU also achieves high accuracy of over 90% for damage identification, due to its advantages in feature extraction. These findings suggest that the proposed approach has significant potential for real-life structural health monitoring applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简墨完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
重要的炳发布了新的文献求助10
5秒前
lezbj99发布了新的文献求助10
6秒前
灵巧的导师完成签到,获得积分10
8秒前
8秒前
ding应助皮蛋采纳,获得10
12秒前
16秒前
完美世界应助重要的炳采纳,获得10
18秒前
小桑桑完成签到,获得积分10
18秒前
21秒前
天天快乐应助飘逸星影采纳,获得10
22秒前
大个应助Paper多多采纳,获得10
22秒前
英姑应助喜欢做实验采纳,获得10
24秒前
25秒前
25秒前
jevon应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
30秒前
foolish发布了新的文献求助10
30秒前
wangnn发布了新的文献求助10
34秒前
Akim应助zs采纳,获得10
35秒前
1771408007发布了新的文献求助10
35秒前
36秒前
38秒前
38秒前
书霂完成签到,获得积分10
39秒前
henry发布了新的文献求助10
42秒前
飘逸星影发布了新的文献求助10
42秒前
42秒前
lezbj99发布了新的文献求助10
43秒前
与梦随行2011完成签到,获得积分10
44秒前
46秒前
汤姆完成签到 ,获得积分10
47秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212442
求助须知:如何正确求助?哪些是违规求助? 2861244
关于积分的说明 8127961
捐赠科研通 2527199
什么是DOI,文献DOI怎么找? 1360859
科研通“疑难数据库(出版商)”最低求助积分说明 643348
邀请新用户注册赠送积分活动 615683