APPA-3D: an autonomous 3D path planning algorithm for UAVs in unknown complex environments

运动规划 计算机科学 强化学习 灵活性(工程) 路径(计算) 碰撞 避碰 包络线(雷达) 过程(计算) 实时计算 机器人 人工智能 电信 雷达 统计 数学 计算机安全 程序设计语言 操作系统
作者
Jintao Wang,Zuyi Zhao,Jiayi Qu,Xingguo Chen
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:7
标识
DOI:10.1038/s41598-024-51286-2
摘要

Abstract Due to their high flexibility, low cost, and ease of handling, Unmanned Aerial Vehicles (UAVs) are often used to perform difficult tasks in complex environments. Stable and reliable path planning capability is the fundamental demand for UAVs to accomplish their flight tasks. Most researches on UAV path planning are carried out under the premise of known environmental information, and it is difficult to safely reach the target position in the face of unknown environment. Thus, an autonomous collision-free path planning algorithm for UAVs in unknown complex environments (APPA-3D) is proposed. An anti-collision control strategy is designed using the UAV collision safety envelope, which relies on the UAV's environmental awareness capability to continuously interact with external environmental information. A dynamic reward function of reinforcement learning combined with the actual flight environment is designed and an optimized reinforcement learning action exploration strategy based on the action selection probability is proposed. Then, an improved RL algorithm is used to simulate the UAV flight process in unknown environment, and the algorithm is trained by interacting with the environment, which finally realizes autonomous collision-free path planning for UAVs. The comparative experimental results in the same environment show that APPA-3D can effectively guide the UAV to plan a safe and collision-free path from the starting point to the target point in an unknown complex 3D environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助littleblack采纳,获得10
刚刚
荷月初六发布了新的文献求助10
1秒前
math-naive完成签到,获得积分10
1秒前
black云发布了新的文献求助10
2秒前
2秒前
3秒前
Albert发布了新的文献求助10
3秒前
叫我富婆儿完成签到,获得积分10
3秒前
Ava应助舒心的如柏采纳,获得10
4秒前
4秒前
辛普森完成签到,获得积分10
4秒前
顺顺顺顺完成签到 ,获得积分10
4秒前
爱吃蔬菜完成签到,获得积分10
5秒前
秋秋儿完成签到,获得积分10
5秒前
wy完成签到,获得积分10
6秒前
888完成签到,获得积分10
6秒前
6秒前
火花发布了新的文献求助10
7秒前
Sharif318完成签到,获得积分10
7秒前
充电宝应助TiAmo采纳,获得10
8秒前
Emper发布了新的文献求助10
8秒前
思源应助踟蹰采纳,获得10
8秒前
8秒前
9秒前
Kurenai发布了新的文献求助100
9秒前
三岁完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
yang完成签到,获得积分10
9秒前
杰杰发布了新的文献求助20
10秒前
科研通AI6应助222采纳,获得10
10秒前
wsj发布了新的文献求助10
11秒前
st完成签到,获得积分10
11秒前
活力的含桃完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
zhq发布了新的文献求助10
13秒前
得失心的诅咒完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939