Healthy aging trajectories and their predictors among Chinese older adults: Evidence from a 7-year nationwide prospective cohort study

老年学 生命历程法 成功老龄化 医学 罗维 纵向研究 心理学 队列 队列研究 心理干预 泊松回归 人口学 发展心理学 环境卫生 人口 精神科 病理 营销 社会学 内科学 业务
作者
Xu Wang,Jinzhao Xie,Menglin Shang,Ping Yin,Jing Gu
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:120: 105331-105331 被引量:3
标识
DOI:10.1016/j.archger.2024.105331
摘要

This study aimed to identify healthy aging trajectories of Chinese older adults, and explore the factors contributing to these trajectories. We used data from four waves (2011-2018) of China Health and Retirement Longitudinal Study. We developed a healthy aging metric based on the healthy aging framework of World Health Organization (WHO) and Bayesian multilevel item response theory (IRT) method. The healthy aging trajectories were identified using the latent class growth analysis. The predictors of trajectories were explored using multinomial logistic regression analysis. Additionally, we developed two alternative metrics for healthy aging based on the Chinese Healthy Ageing Index (CHAI) and Rowe and Kahn's model of successful aging, respectively. We compared these metrics to the one developed based on the WHO's healthy aging framework. We identified three distinct healthy aging trajectories with varying scores and decline rates. Individuals who were female, had lower educational levels, resided in rural areas, experienced depression, had more chronic diseases, participated in fewer social activities, had fewer childhood friends, experienced more adverse childhood events, and had worse family financial status in childhood were more likely to experience a worse healthy aging trajectory compared to their counterparts. Supplementary analysis showed that healthy aging metric based on WHO definition and IRT method had the strongest association with health outcomes compared to the metrics based on CHAI, as well as Rowe and Kahn model. Our findings provide a foundation for the development of tailored interventions to enhance and sustain healthy aging among Chinese older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Micky发布了新的文献求助10
1秒前
ruxing完成签到,获得积分10
1秒前
影像大侠完成签到,获得积分10
1秒前
852应助HYG采纳,获得30
2秒前
麦麦完成签到,获得积分10
2秒前
田様应助Isabel采纳,获得10
2秒前
gezid完成签到 ,获得积分10
2秒前
3秒前
3秒前
niu1发布了新的文献求助10
3秒前
Intro发布了新的文献求助10
3秒前
舒服的冬天完成签到,获得积分10
4秒前
Helical给Helical的求助进行了留言
4秒前
甜蜜晓绿完成签到,获得积分10
4秒前
5秒前
钱多多完成签到,获得积分10
5秒前
baekhyun完成签到,获得积分20
5秒前
5秒前
dpp发布了新的文献求助10
5秒前
今今完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
打打应助无情的白桃采纳,获得10
7秒前
香蕉觅云应助与光同晨采纳,获得10
8秒前
8秒前
小蘑菇应助clm采纳,获得10
8秒前
yhnsag完成签到,获得积分10
8秒前
Lin完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
Rain发布了新的文献求助10
10秒前
butiflow完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762