Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach

医学 防坠落 伤害预防 风险评估 接收机工作特性 毒物控制 心理干预 人口 职业安全与健康 机器学习 人工智能 医疗急救 护理部 环境卫生 内科学 计算机科学 计算机安全 病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:72 (4): 1145-1154 被引量:7
标识
DOI:10.1111/jgs.18776
摘要

Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着新蕾完成签到,获得积分10
刚刚
蜀山刀客完成签到,获得积分10
1秒前
崔宁宁完成签到 ,获得积分0
4秒前
卓垚完成签到,获得积分10
6秒前
yar完成签到 ,获得积分10
9秒前
nancy应助hannah采纳,获得10
9秒前
碧蓝巧荷完成签到 ,获得积分10
10秒前
QYY完成签到,获得积分10
11秒前
风清扬应助自然白秋采纳,获得20
11秒前
小么完成签到 ,获得积分10
12秒前
美好凡柔完成签到 ,获得积分10
13秒前
进退须臾完成签到,获得积分10
13秒前
zyshao完成签到,获得积分10
18秒前
TG303完成签到,获得积分10
18秒前
干净盼山完成签到,获得积分10
22秒前
liujinjin完成签到,获得积分10
23秒前
smottom完成签到,获得积分0
23秒前
25秒前
maxyer完成签到,获得积分10
26秒前
rayzhanghl完成签到,获得积分10
27秒前
jintian完成签到 ,获得积分10
29秒前
单纯的醉柳完成签到 ,获得积分10
29秒前
善良的火完成签到 ,获得积分10
30秒前
胡楠完成签到,获得积分10
30秒前
乌云乌云快走开完成签到,获得积分10
31秒前
qqaeao完成签到,获得积分10
31秒前
韭菜盒子完成签到,获得积分20
32秒前
万事屋完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
wdccx完成签到,获得积分10
37秒前
xzy998应助科研通管家采纳,获得10
39秒前
xzy998应助科研通管家采纳,获得10
39秒前
39秒前
活泼的烙完成签到 ,获得积分10
39秒前
娜行完成签到 ,获得积分10
41秒前
Sandy完成签到,获得积分10
44秒前
烂漫的睫毛完成签到 ,获得积分20
45秒前
受伤问凝完成签到 ,获得积分10
45秒前
阿狸完成签到 ,获得积分0
45秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015