Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach

医学 防坠落 伤害预防 风险评估 接收机工作特性 毒物控制 心理干预 人口 职业安全与健康 机器学习 人工智能 医疗急救 护理部 环境卫生 内科学 计算机科学 计算机安全 病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:72 (4): 1145-1154 被引量:9
标识
DOI:10.1111/jgs.18776
摘要

Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny心晴完成签到 ,获得积分10
1秒前
罗媛发布了新的文献求助10
1秒前
小昕思完成签到 ,获得积分10
2秒前
长林完成签到,获得积分20
2秒前
1111111完成签到,获得积分10
2秒前
云胡不喜完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
酷炫萃发布了新的文献求助10
3秒前
CodeCraft应助chemlink采纳,获得10
3秒前
科目三应助出其东门采纳,获得10
4秒前
畅快自行车完成签到 ,获得积分10
6秒前
7秒前
田様应助希夷采纳,获得10
8秒前
Lucas应助shanbaibai采纳,获得10
8秒前
爆米花应助拉屎很顺畅采纳,获得10
10秒前
tang发布了新的文献求助10
11秒前
糟糕的便当完成签到,获得积分10
11秒前
12秒前
笨笨百招发布了新的文献求助10
12秒前
12秒前
14秒前
NexusExplorer应助H_W采纳,获得10
14秒前
kjkjly发布了新的文献求助20
14秒前
罗媛完成签到,获得积分20
15秒前
共享精神应助陶醉的羞花采纳,获得10
17秒前
隐形曼青应助高斯采纳,获得10
18秒前
19秒前
wuxian发布了新的文献求助10
19秒前
20秒前
阿晨完成签到,获得积分10
21秒前
cassie发布了新的文献求助10
25秒前
Slby567发布了新的文献求助10
25秒前
26秒前
30秒前
urology dog完成签到,获得积分10
30秒前
wt完成签到,获得积分10
30秒前
31秒前
nekoz完成签到,获得积分10
31秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707