Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach

医学 防坠落 伤害预防 风险评估 接收机工作特性 毒物控制 心理干预 人口 职业安全与健康 机器学习 人工智能 医疗急救 护理部 环境卫生 内科学 计算机科学 计算机安全 病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:72 (4): 1145-1154 被引量:1
标识
DOI:10.1111/jgs.18776
摘要

Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿珩发布了新的文献求助10
1秒前
2秒前
在水一方应助han采纳,获得10
2秒前
调研昵称发布了新的文献求助10
3秒前
瘦瘦的炳完成签到,获得积分10
3秒前
4秒前
小满完成签到,获得积分10
5秒前
5秒前
Owen应助锋回露转123采纳,获得10
5秒前
隐形曼青应助橘温茶暖采纳,获得10
5秒前
quhayley应助xukaixuan001采纳,获得10
6秒前
6秒前
德德发布了新的文献求助10
6秒前
6秒前
古月完成签到,获得积分10
7秒前
可爱的函函应助谭显芝采纳,获得10
8秒前
可爱的函函应助笑嘻嘻采纳,获得10
10秒前
10秒前
我是老大应助忐忑的远山采纳,获得10
10秒前
调研昵称发布了新的文献求助10
10秒前
jianni发布了新的文献求助10
11秒前
11秒前
可靠雪碧关注了科研通微信公众号
11秒前
bkagyin应助陈梓采纳,获得10
13秒前
13秒前
哈哈完成签到,获得积分10
14秒前
bkagyin应助权箴采纳,获得10
14秒前
15秒前
zzzwwwkkk完成签到,获得积分10
17秒前
17秒前
Owen应助科研通管家采纳,获得10
18秒前
不配.应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
乐乐应助vincen91采纳,获得10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706