清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach

医学 防坠落 伤害预防 风险评估 接收机工作特性 毒物控制 心理干预 人口 职业安全与健康 机器学习 人工智能 医疗急救 护理部 环境卫生 内科学 计算机科学 计算机安全 病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:72 (4): 1145-1154 被引量:9
标识
DOI:10.1111/jgs.18776
摘要

Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Alisha发布了新的文献求助10
10秒前
耕牛热完成签到,获得积分10
14秒前
在水一方应助科研通管家采纳,获得10
23秒前
26秒前
JJJ完成签到,获得积分10
29秒前
一二发布了新的文献求助10
31秒前
JJJ关闭了JJJ文献求助
33秒前
zw完成签到,获得积分10
40秒前
JJJ关闭了JJJ文献求助
44秒前
玉昆完成签到 ,获得积分10
1分钟前
严惜完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分0
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
yzhilson完成签到 ,获得积分0
1分钟前
不能吃太饱完成签到 ,获得积分10
2分钟前
科研通AI5应助miumiu2024采纳,获得10
2分钟前
寂寞的诗云完成签到,获得积分10
2分钟前
2分钟前
huanghe完成签到,获得积分10
2分钟前
PeterLin完成签到,获得积分10
2分钟前
WenJun完成签到,获得积分10
3分钟前
活力初蝶给活力初蝶的求助进行了留言
3分钟前
果酱完成签到,获得积分10
3分钟前
清脆的靖仇完成签到,获得积分10
3分钟前
婉莹完成签到 ,获得积分0
3分钟前
飞翔的企鹅完成签到,获得积分10
3分钟前
3分钟前
gwbk完成签到,获得积分10
3分钟前
miumiu2024发布了新的文献求助10
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
蓝桉完成签到 ,获得积分10
3分钟前
AmyHu完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
风趣的涵柏完成签到,获得积分10
3分钟前
幽默滑板完成签到 ,获得积分10
4分钟前
狼来了aas完成签到,获得积分10
4分钟前
施光玲44931完成签到 ,获得积分10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
miumiu2024完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066100
求助须知:如何正确求助?哪些是违规求助? 4288401
关于积分的说明 13359928
捐赠科研通 4107373
什么是DOI,文献DOI怎么找? 2249202
邀请新用户注册赠送积分活动 1254678
关于科研通互助平台的介绍 1186720