医学
防坠落
伤害预防
风险评估
接收机工作特性
毒物控制
心理干预
人口
职业安全与健康
机器学习
人工智能
医疗急救
护理部
环境卫生
内科学
计算机科学
计算机安全
病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
摘要
Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI