Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach

医学 防坠落 伤害预防 风险评估 接收机工作特性 毒物控制 心理干预 人口 职业安全与健康 机器学习 人工智能 医疗急救 护理部 环境卫生 内科学 计算机科学 计算机安全 病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:72 (4): 1145-1154 被引量:9
标识
DOI:10.1111/jgs.18776
摘要

Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
纳川发布了新的文献求助10
2秒前
yangling0124完成签到,获得积分10
3秒前
mfstone完成签到,获得积分10
3秒前
烟花应助WXY采纳,获得10
4秒前
崔晴晴完成签到,获得积分10
5秒前
Orange应助六神曲采纳,获得10
5秒前
5秒前
5秒前
kuxiao2333完成签到,获得积分10
5秒前
6秒前
6秒前
阿可阿可完成签到,获得积分10
6秒前
6秒前
葛优发布了新的文献求助10
7秒前
Daria发布了新的文献求助10
7秒前
orixero应助石头采纳,获得10
7秒前
充电宝应助廿木采纳,获得20
8秒前
恒星完成签到,获得积分10
8秒前
可乐加糖关注了科研通微信公众号
8秒前
迷路兔子完成签到,获得积分10
9秒前
liwen完成签到,获得积分10
9秒前
Bu完成签到 ,获得积分10
9秒前
9秒前
Yummy发布了新的文献求助10
10秒前
scenery0510完成签到,获得积分10
10秒前
牛大锤完成签到,获得积分10
10秒前
英姑应助sci小水采纳,获得10
10秒前
ignih发布了新的文献求助10
10秒前
10秒前
11秒前
nancylan发布了新的文献求助10
11秒前
yang关注了科研通微信公众号
11秒前
AMZX发布了新的文献求助10
12秒前
pharmren完成签到,获得积分10
12秒前
彭于晏应助Lorry采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095