蚯蚓
微塑料
护根物
生态系统
土壤生物学
土壤水分
生物
生态学
农学
作者
Huimei Tian,Chuanwei Zheng,Xinjie Huang,Qi Chen,Bing Li,Zhongkun Du,Lusheng Zhu,Jinhua Wang,Jun Wang
标识
DOI:10.1016/j.scitotenv.2024.170094
摘要
Microplastics derived from polyethylene (PE) mulch films are widely found in farmland soils and present considerable potential threats to agricultural soil ecosystems. However, the influence of microplastics derived from PE mulch films, especially those derived from farmland residual PE mulch films, on soil ecosystems remains unclear. In this study, we analyzed the bacterial communities attached to farmland residual transparent PE mulch film (FRMF) collected from peanut fields and the different ecological effects of unused PE mulch film-derived microplastics (MPs) and FRMF-derived microplastics (MPs-aged) on the soil and earthworm Metaphire guillelmi gut microbiota, functional traits, and co-occurrence patterns. The results showed that the assembly and functional patterns of the bacterial communities attached to the FRMF were clearly distinct from those in the surrounding farmland soil, and the FRMF enriched some potential plastic-degrading and pathogenic bacteria, such as Nocardioidaceae, Clostridiaceae, Micrococcaceae, and Mycobacteriaceae. MPs substantially influenced the assembly and functional traits of soil bacterial communities; however, they only significantly changed the functional traits of earthworm gut bacterial communities. MPs-aged considerably affected the assembly and functional traits of both soil and earthworm gut bacterial communities. Notably, MPs had a more remarkable effect on nitrogen-related functions than the MPs-aged in numbers for both soil and earthworm gut samples. Co-occurrence network analysis revealed that both MPs and MPs-aged enhanced the synergistic interactions among operational taxonomic units (OTUs) of the composition networks for all samples. For community functional networks, MPs and MPs-aged enhanced the antagonistic interactions for soil samples; however, they exhibited contrasting effects for earthworm gut samples, as MPs enhanced the synergistic interactions among the functional contents. These findings broaden and deepen our understanding of the effects of FRMF-derived microplastics on soil ecosystems, suggesting that the harmful effects of aged plastics on the ecological environment should be considered.
科研通智能强力驱动
Strongly Powered by AbleSci AI