Machine Learning Models for Prediction of Diabetic Microvascular Complications

医学 糖尿病性视网膜病变 糖尿病 预测建模 内科学 机器学习 计算机科学 内分泌学
作者
Sarah Kanbour,Catharine Harris,Benjamin Lalani,Risa M. Wolf,Hugo Fitipaldi,Maria F. Gomez,Nestoras Mathioudakis
出处
期刊:Journal of diabetes science and technology [SAGE]
卷期号:18 (2): 273-286 被引量:6
标识
DOI:10.1177/19322968231223726
摘要

Importance and Aims: Diabetic microvascular complications significantly impact morbidity and mortality. This review focuses on machine learning/artificial intelligence (ML/AI) in predicting diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy (DN). Methods: A comprehensive PubMed search from 1990 to 2023 identified studies on ML/AI models for diabetic microvascular complications. The review analyzed study design, cohorts, predictors, ML techniques, prediction horizon, and performance metrics. Results: Among the 74 identified studies, 256 featured internally validated ML models and 124 had externally validated models, with about half being retrospective. Since 2010, there has been a rise in the use of ML for predicting microvascular complications, mainly driven by DKD research across 27 countries. A more modest increase in ML research on DR and DN was observed, with publications from fewer countries. For all microvascular complications, predictive models achieved a mean (standard deviation) c-statistic of 0.79 (0.09) on internal validation and 0.72 (0.12) on external validation. Diabetic kidney disease models had the highest discrimination, with c-statistics of 0.81 (0.09) on internal validation and 0.74 (0.13) on external validation, respectively. Few studies externally validated prediction of DN. The prediction horizon, outcome definitions, number and type of predictors, and ML technique significantly influenced model performance. Conclusions and Relevance: There is growing global interest in using ML for predicting diabetic microvascular complications. Research on DKD is the most advanced in terms of publication volume and overall prediction performance. Both DR and DN require more research. External validation and adherence to recommended guidelines are crucial.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的硬币完成签到,获得积分10
1秒前
NexusExplorer应助Albert_research采纳,获得30
1秒前
gehongbing完成签到 ,获得积分10
1秒前
独特的春发布了新的文献求助10
2秒前
星辰大海应助Echo采纳,获得10
2秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
hubanj完成签到,获得积分10
4秒前
4秒前
灵巧映梦发布了新的文献求助10
4秒前
5秒前
艾比西地完成签到 ,获得积分10
5秒前
6秒前
成就溪灵发布了新的文献求助10
6秒前
6秒前
李李完成签到,获得积分10
6秒前
smottom应助邢大志采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
子车万仇发布了新的文献求助10
7秒前
晓磊发布了新的文献求助30
8秒前
Maggie发布了新的文献求助10
8秒前
8秒前
8秒前
下雨这天完成签到,获得积分10
9秒前
Broccoli完成签到,获得积分10
9秒前
求助人员发布了新的文献求助10
10秒前
苹果文博发布了新的文献求助10
10秒前
nemo711完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
搜集达人应助含糊的背包采纳,获得10
11秒前
在水一方应助调皮的酬海采纳,获得10
11秒前
一期一会发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769283
求助须知:如何正确求助?哪些是违规求助? 5579143
关于积分的说明 15421126
捐赠科研通 4902990
什么是DOI,文献DOI怎么找? 2638048
邀请新用户注册赠送积分活动 1585929
关于科研通互助平台的介绍 1541056