Machine Learning Models for Prediction of Diabetic Microvascular Complications

医学 糖尿病性视网膜病变 糖尿病 预测建模 内科学 机器学习 人工智能 计算机科学 内分泌学
作者
Sarah Kanbour,Catharine Harris,Benjamin Lalani,Risa M. Wolf,Hugo Fitipaldi,Maria F. Gomez,Nestoras Mathioudakis
出处
期刊:Journal of diabetes science and technology [SAGE]
被引量:1
标识
DOI:10.1177/19322968231223726
摘要

Importance and Aims: Diabetic microvascular complications significantly impact morbidity and mortality. This review focuses on machine learning/artificial intelligence (ML/AI) in predicting diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy (DN). Methods: A comprehensive PubMed search from 1990 to 2023 identified studies on ML/AI models for diabetic microvascular complications. The review analyzed study design, cohorts, predictors, ML techniques, prediction horizon, and performance metrics. Results: Among the 74 identified studies, 256 featured internally validated ML models and 124 had externally validated models, with about half being retrospective. Since 2010, there has been a rise in the use of ML for predicting microvascular complications, mainly driven by DKD research across 27 countries. A more modest increase in ML research on DR and DN was observed, with publications from fewer countries. For all microvascular complications, predictive models achieved a mean (standard deviation) c-statistic of 0.79 (0.09) on internal validation and 0.72 (0.12) on external validation. Diabetic kidney disease models had the highest discrimination, with c-statistics of 0.81 (0.09) on internal validation and 0.74 (0.13) on external validation, respectively. Few studies externally validated prediction of DN. The prediction horizon, outcome definitions, number and type of predictors, and ML technique significantly influenced model performance. Conclusions and Relevance: There is growing global interest in using ML for predicting diabetic microvascular complications. Research on DKD is the most advanced in terms of publication volume and overall prediction performance. Both DR and DN require more research. External validation and adherence to recommended guidelines are crucial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
挽眠完成签到,获得积分20
1秒前
懵懂的鞯完成签到,获得积分10
1秒前
lin完成签到,获得积分10
1秒前
曲悦发布了新的文献求助30
2秒前
ossantu完成签到,获得积分10
2秒前
阮人雄完成签到,获得积分10
2秒前
小垃圾完成签到,获得积分10
3秒前
zuoyou完成签到,获得积分10
3秒前
3秒前
liu完成签到,获得积分10
4秒前
孤独雨梅完成签到,获得积分10
4秒前
12345完成签到,获得积分10
4秒前
ZHT完成签到,获得积分10
6秒前
qqqq发布了新的文献求助10
6秒前
小灰灰完成签到 ,获得积分10
7秒前
8秒前
liuchao完成签到,获得积分10
10秒前
萌&完成签到,获得积分10
10秒前
张婷婷完成签到,获得积分10
11秒前
mini昕完成签到,获得积分10
11秒前
芳芳子呀完成签到,获得积分10
12秒前
小猴子完成签到,获得积分10
12秒前
温眼张完成签到,获得积分10
14秒前
小小的梦想完成签到,获得积分10
14秒前
1111发布了新的文献求助10
14秒前
wjw发布了新的文献求助10
14秒前
14秒前
Xtals完成签到,获得积分10
15秒前
海心完成签到,获得积分10
15秒前
yzxzdm完成签到 ,获得积分10
15秒前
可靠从云完成签到 ,获得积分10
15秒前
flylmy2008完成签到,获得积分10
16秒前
自由完成签到 ,获得积分10
17秒前
LZN完成签到,获得积分10
17秒前
suyan完成签到 ,获得积分10
17秒前
19秒前
毛毛完成签到,获得积分10
19秒前
葳蕤苍生完成签到,获得积分10
19秒前
Xaoyie发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784882
关于积分的说明 7769151
捐赠科研通 2440425
什么是DOI,文献DOI怎么找? 1297383
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792