Machine Learning Models for Prediction of Diabetic Microvascular Complications

医学 糖尿病性视网膜病变 糖尿病 预测建模 内科学 机器学习 计算机科学 内分泌学
作者
Sarah Kanbour,Catharine Harris,Benjamin Lalani,Risa M. Wolf,Hugo Fitipaldi,Maria F. Gomez,Nestoras Mathioudakis
出处
期刊:Journal of diabetes science and technology [SAGE Publishing]
卷期号:18 (2): 273-286 被引量:6
标识
DOI:10.1177/19322968231223726
摘要

Importance and Aims: Diabetic microvascular complications significantly impact morbidity and mortality. This review focuses on machine learning/artificial intelligence (ML/AI) in predicting diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy (DN). Methods: A comprehensive PubMed search from 1990 to 2023 identified studies on ML/AI models for diabetic microvascular complications. The review analyzed study design, cohorts, predictors, ML techniques, prediction horizon, and performance metrics. Results: Among the 74 identified studies, 256 featured internally validated ML models and 124 had externally validated models, with about half being retrospective. Since 2010, there has been a rise in the use of ML for predicting microvascular complications, mainly driven by DKD research across 27 countries. A more modest increase in ML research on DR and DN was observed, with publications from fewer countries. For all microvascular complications, predictive models achieved a mean (standard deviation) c-statistic of 0.79 (0.09) on internal validation and 0.72 (0.12) on external validation. Diabetic kidney disease models had the highest discrimination, with c-statistics of 0.81 (0.09) on internal validation and 0.74 (0.13) on external validation, respectively. Few studies externally validated prediction of DN. The prediction horizon, outcome definitions, number and type of predictors, and ML technique significantly influenced model performance. Conclusions and Relevance: There is growing global interest in using ML for predicting diabetic microvascular complications. Research on DKD is the most advanced in terms of publication volume and overall prediction performance. Both DR and DN require more research. External validation and adherence to recommended guidelines are crucial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
3秒前
现实的曼安完成签到 ,获得积分10
5秒前
ding应助hlm采纳,获得10
18秒前
桃子完成签到 ,获得积分10
20秒前
彭于晏应助超帅的又槐采纳,获得80
35秒前
40秒前
41秒前
123完成签到 ,获得积分10
44秒前
liberation完成签到 ,获得积分0
46秒前
stiger完成签到,获得积分10
48秒前
QQ完成签到,获得积分10
49秒前
七月完成签到,获得积分10
49秒前
49秒前
超帅的又槐完成签到,获得积分10
51秒前
WW完成签到 ,获得积分10
53秒前
天水张家辉完成签到,获得积分10
53秒前
Epiphany发布了新的文献求助10
55秒前
量子星尘发布了新的文献求助10
1分钟前
踏实的怜菡完成签到 ,获得积分10
1分钟前
甜甜圈完成签到 ,获得积分10
1分钟前
代扁扁完成签到 ,获得积分10
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
jiangjiang完成签到,获得积分10
1分钟前
落落完成签到 ,获得积分0
1分钟前
1分钟前
wanci应助方俊驰采纳,获得10
1分钟前
1分钟前
HCT完成签到,获得积分10
1分钟前
方俊驰发布了新的文献求助10
1分钟前
long完成签到,获得积分10
1分钟前
1分钟前
鲲鹏完成签到 ,获得积分10
1分钟前
Wai完成签到 ,获得积分10
1分钟前
许愿完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
tianmj发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015