重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine Learning Models for Prediction of Diabetic Microvascular Complications

医学 糖尿病性视网膜病变 糖尿病 预测建模 内科学 机器学习 计算机科学 内分泌学
作者
Sarah Kanbour,Catharine Harris,Benjamin Lalani,Risa M. Wolf,Hugo Fitipaldi,Maria F. Gomez,Nestoras Mathioudakis
出处
期刊:Journal of diabetes science and technology [SAGE]
卷期号:18 (2): 273-286 被引量:6
标识
DOI:10.1177/19322968231223726
摘要

Importance and Aims: Diabetic microvascular complications significantly impact morbidity and mortality. This review focuses on machine learning/artificial intelligence (ML/AI) in predicting diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy (DN). Methods: A comprehensive PubMed search from 1990 to 2023 identified studies on ML/AI models for diabetic microvascular complications. The review analyzed study design, cohorts, predictors, ML techniques, prediction horizon, and performance metrics. Results: Among the 74 identified studies, 256 featured internally validated ML models and 124 had externally validated models, with about half being retrospective. Since 2010, there has been a rise in the use of ML for predicting microvascular complications, mainly driven by DKD research across 27 countries. A more modest increase in ML research on DR and DN was observed, with publications from fewer countries. For all microvascular complications, predictive models achieved a mean (standard deviation) c-statistic of 0.79 (0.09) on internal validation and 0.72 (0.12) on external validation. Diabetic kidney disease models had the highest discrimination, with c-statistics of 0.81 (0.09) on internal validation and 0.74 (0.13) on external validation, respectively. Few studies externally validated prediction of DN. The prediction horizon, outcome definitions, number and type of predictors, and ML technique significantly influenced model performance. Conclusions and Relevance: There is growing global interest in using ML for predicting diabetic microvascular complications. Research on DKD is the most advanced in terms of publication volume and overall prediction performance. Both DR and DN require more research. External validation and adherence to recommended guidelines are crucial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
吃人不眨眼应助常璐旸采纳,获得20
1秒前
1秒前
RJC发布了新的文献求助10
1秒前
洁白的白白完成签到 ,获得积分10
1秒前
英吉利25发布了新的文献求助10
2秒前
2秒前
Wvzzzzz发布了新的文献求助10
3秒前
ran完成签到,获得积分10
3秒前
Maximuszhao完成签到,获得积分10
3秒前
ddsvdv完成签到,获得积分10
3秒前
香蕉觅云应助淡然的昊焱采纳,获得10
4秒前
小朋友完成签到,获得积分10
4秒前
4秒前
和平星完成签到,获得积分10
5秒前
jeffchanczy完成签到,获得积分10
5秒前
今后应助美好灵寒采纳,获得10
5秒前
since完成签到,获得积分20
5秒前
5秒前
yznfly应助王小凡采纳,获得30
5秒前
6秒前
知性的幻竹完成签到,获得积分20
6秒前
畅快平蓝完成签到,获得积分10
6秒前
浮游应助Rascal采纳,获得10
6秒前
Ent_发布了新的文献求助10
6秒前
蒸馏水发布了新的文献求助10
7秒前
xnkl发布了新的文献求助20
7秒前
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
无奈的平文完成签到 ,获得积分10
8秒前
大模型应助zkexuan采纳,获得10
8秒前
gouqi发布了新的文献求助20
8秒前
济南青年完成签到,获得积分10
8秒前
爆米花应助宇宙队采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
小小台yeah发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567