Machine Learning Models for Prediction of Diabetic Microvascular Complications

医学 糖尿病性视网膜病变 糖尿病 预测建模 内科学 机器学习 计算机科学 内分泌学
作者
Sarah Kanbour,Catharine Harris,Benjamin Lalani,Risa M. Wolf,Hugo Fitipaldi,Maria F. Gomez,Nestoras Mathioudakis
出处
期刊:Journal of diabetes science and technology [SAGE]
卷期号:18 (2): 273-286 被引量:6
标识
DOI:10.1177/19322968231223726
摘要

Importance and Aims: Diabetic microvascular complications significantly impact morbidity and mortality. This review focuses on machine learning/artificial intelligence (ML/AI) in predicting diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy (DN). Methods: A comprehensive PubMed search from 1990 to 2023 identified studies on ML/AI models for diabetic microvascular complications. The review analyzed study design, cohorts, predictors, ML techniques, prediction horizon, and performance metrics. Results: Among the 74 identified studies, 256 featured internally validated ML models and 124 had externally validated models, with about half being retrospective. Since 2010, there has been a rise in the use of ML for predicting microvascular complications, mainly driven by DKD research across 27 countries. A more modest increase in ML research on DR and DN was observed, with publications from fewer countries. For all microvascular complications, predictive models achieved a mean (standard deviation) c-statistic of 0.79 (0.09) on internal validation and 0.72 (0.12) on external validation. Diabetic kidney disease models had the highest discrimination, with c-statistics of 0.81 (0.09) on internal validation and 0.74 (0.13) on external validation, respectively. Few studies externally validated prediction of DN. The prediction horizon, outcome definitions, number and type of predictors, and ML technique significantly influenced model performance. Conclusions and Relevance: There is growing global interest in using ML for predicting diabetic microvascular complications. Research on DKD is the most advanced in terms of publication volume and overall prediction performance. Both DR and DN require more research. External validation and adherence to recommended guidelines are crucial.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放青旋应助Eternity采纳,获得20
刚刚
candy发布了新的文献求助10
刚刚
ccnn完成签到 ,获得积分10
刚刚
小马甲应助满意曼寒采纳,获得10
刚刚
刚刚
zz完成签到,获得积分10
刚刚
酸酸完成签到 ,获得积分20
刚刚
可爱的函函应助宸殇翊采纳,获得10
1秒前
科研通AI6应助,,采纳,获得10
1秒前
CodeCraft应助余真谛采纳,获得10
1秒前
1秒前
young完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
jetwang给jetwang的求助进行了留言
2秒前
2秒前
难过板栗发布了新的文献求助10
2秒前
斯文败类应助shuofeng采纳,获得10
3秒前
高高的夜梅完成签到,获得积分20
4秒前
Vivian_Zhang应助zzz采纳,获得10
4秒前
橘子味完成签到,获得积分10
4秒前
aniu发布了新的文献求助10
4秒前
Rainnnn完成签到,获得积分20
4秒前
4秒前
why完成签到,获得积分10
5秒前
顾北完成签到,获得积分10
5秒前
斑布发布了新的文献求助10
5秒前
科研通AI6应助新嘟采纳,获得10
5秒前
LL77完成签到 ,获得积分10
5秒前
5秒前
lijia3发布了新的文献求助10
6秒前
彭于晏应助高高的冰绿采纳,获得10
6秒前
完美世界应助Simms采纳,获得10
6秒前
英姑应助Sitroul采纳,获得10
6秒前
6秒前
健忘芷发布了新的文献求助20
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401