FDUM-Net: An enhanced FPN and U-Net architecture for skin lesion segmentation

网(多面体) 分割 卷积神经网络 计算机科学 背景(考古学) 编码器 掷骰子 深度学习 Sørensen–骰子系数 人工智能 模式识别(心理学) 感兴趣区域 网络体系结构 图像分割 计算机视觉 数学 几何学 古生物学 计算机安全 生物 操作系统
作者
H. Sharen,Malathy Jawahar,L. Jani Anbarasi,Vinayakumar Ravi,Norah Saleh Alghamdi,Wael Suliman
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 106037-106037 被引量:16
标识
DOI:10.1016/j.bspc.2024.106037
摘要

Early detection is essential for the successful removal of all malignant lesions from the body, and skin cancer is one of the most widespread cancers globally. In medical image analysis, identifying the diseased area or the region of interest (ROI) significantly relies on advanced network models. Segmenting skin lesions is a strenuous task due to the presence of varied lesion shapes, ambiguous edge borders, low contrast, and presences of artifacts and noises. Performing manual identification of ROI on a large-scale skin lesion assessment is challenging. This study proposes enhanced FPN and U-Net network models for supervised skin lesion segmentation. The study investigates eight Convolutional Neural Network architectures, including U-Net (classic), U-Net + MobileNet, U-Net + InceptionV3, U-Net + DenseNet121, FPN(classic), FPN + MobileNet, FPN + InceptionV3, and FPN + DenseNet121. The performance of these architectures is evaluated using three optimizers (RMSProp, Adam, and SGD) on the ISIC 2016 dataset. The evaluation metrics include accuracy, IoU, and Dice coefficients on the testing dataset. The experimental findings demonstrate that the FPN architecture with DenseNet121 as the backbone encoder and the U-Net architecture with MobileNet as the backbone encoder achieved the highest dice coefficient of 0.93, accuracy of 0.96, and IoU of 0.87. Our proposed solution for enhancing skin lesion segmentation is called FDUM-Net, which is a combination of enhanced FPN with DenseNet as encoder and U-Net with MobileNet designed to capture high-level information and context for more accurate results. These outcomes surpass the performance of previous research and can assist dermatologists in diagnosing skin cancer more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷卷应助太郝啦采纳,获得10
1秒前
1秒前
明天剪纸发布了新的文献求助10
1秒前
积极玲发布了新的文献求助10
1秒前
1秒前
缔顶爱多相完成签到,获得积分10
2秒前
JDEF完成签到,获得积分10
2秒前
思源应助单薄的紫青采纳,获得10
2秒前
2秒前
2秒前
shusen发布了新的文献求助10
3秒前
3秒前
白昼学派完成签到,获得积分10
3秒前
D33sama完成签到,获得积分10
3秒前
hrs发布了新的文献求助10
3秒前
3秒前
舒适悒完成签到,获得积分10
4秒前
隐形曼青应助徐新雨采纳,获得10
4秒前
苏梗完成签到 ,获得积分10
4秒前
5秒前
子苓发布了新的文献求助10
5秒前
5秒前
5秒前
双儿完成签到,获得积分20
5秒前
moumou发布了新的文献求助10
6秒前
思源应助lisa采纳,获得10
6秒前
无花果应助Wand采纳,获得10
6秒前
建安发布了新的文献求助10
7秒前
7秒前
dew应助SKi采纳,获得10
8秒前
waxler发布了新的文献求助10
9秒前
钱钱钱发布了新的文献求助10
9秒前
科研通AI6应助研友_8KKkb8采纳,获得150
9秒前
9秒前
明天剪纸完成签到,获得积分10
9秒前
科目三应助擎天柱采纳,获得10
10秒前
伊吹风子完成签到,获得积分20
10秒前
春深半夏完成签到,获得积分20
10秒前
薛鸿锋发布了新的文献求助10
10秒前
yyyyyge完成签到,获得积分10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066