FDUM-Net: An enhanced FPN and U-Net architecture for skin lesion segmentation

网(多面体) 分割 卷积神经网络 计算机科学 背景(考古学) 编码器 掷骰子 深度学习 Sørensen–骰子系数 人工智能 模式识别(心理学) 感兴趣区域 网络体系结构 图像分割 计算机视觉 数学 几何学 古生物学 计算机安全 生物 操作系统
作者
H. Sharen,Malathy Jawahar,L. Jani Anbarasi,Vinayakumar Ravi,Norah Saleh Alghamdi,Wael Suliman
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 106037-106037 被引量:16
标识
DOI:10.1016/j.bspc.2024.106037
摘要

Early detection is essential for the successful removal of all malignant lesions from the body, and skin cancer is one of the most widespread cancers globally. In medical image analysis, identifying the diseased area or the region of interest (ROI) significantly relies on advanced network models. Segmenting skin lesions is a strenuous task due to the presence of varied lesion shapes, ambiguous edge borders, low contrast, and presences of artifacts and noises. Performing manual identification of ROI on a large-scale skin lesion assessment is challenging. This study proposes enhanced FPN and U-Net network models for supervised skin lesion segmentation. The study investigates eight Convolutional Neural Network architectures, including U-Net (classic), U-Net + MobileNet, U-Net + InceptionV3, U-Net + DenseNet121, FPN(classic), FPN + MobileNet, FPN + InceptionV3, and FPN + DenseNet121. The performance of these architectures is evaluated using three optimizers (RMSProp, Adam, and SGD) on the ISIC 2016 dataset. The evaluation metrics include accuracy, IoU, and Dice coefficients on the testing dataset. The experimental findings demonstrate that the FPN architecture with DenseNet121 as the backbone encoder and the U-Net architecture with MobileNet as the backbone encoder achieved the highest dice coefficient of 0.93, accuracy of 0.96, and IoU of 0.87. Our proposed solution for enhancing skin lesion segmentation is called FDUM-Net, which is a combination of enhanced FPN with DenseNet as encoder and U-Net with MobileNet designed to capture high-level information and context for more accurate results. These outcomes surpass the performance of previous research and can assist dermatologists in diagnosing skin cancer more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
hao8zi完成签到,获得积分10
1秒前
充电宝应助leemix采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
田様应助meng采纳,获得10
2秒前
阿颦发布了新的文献求助10
4秒前
充电宝应助Ganann采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
完美世界应助buno采纳,获得10
5秒前
dd完成签到,获得积分10
5秒前
wei完成签到 ,获得积分10
6秒前
wlz发布了新的文献求助10
6秒前
wanci应助寒时采纳,获得10
6秒前
6秒前
英俊的铭应助雍以菱采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Jasper应助逢亮采纳,获得10
7秒前
沉沉发布了新的文献求助10
8秒前
周国煌给周国煌的求助进行了留言
8秒前
研友_n2QP2L完成签到,获得积分10
10秒前
滕祥应助Nan采纳,获得200
10秒前
诸沧海完成签到,获得积分10
11秒前
义气丹雪应助辛勤芷天采纳,获得10
11秒前
11秒前
丘比特应助hhhhhheeeeee采纳,获得10
13秒前
庄倩莹完成签到,获得积分10
13秒前
pbj发布了新的文献求助10
14秒前
权顺荣完成签到 ,获得积分10
14秒前
默默白桃发布了新的文献求助10
14秒前
14秒前
爆米花应助diedeline采纳,获得10
16秒前
16秒前
慕青应助AA采纳,获得10
17秒前
逢亮完成签到,获得积分10
18秒前
领导范儿应助吴亚运采纳,获得10
18秒前
所所应助神勇语堂采纳,获得10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105