FDUM-Net: An enhanced FPN and U-Net architecture for skin lesion segmentation

网(多面体) 分割 计算机科学 建筑 人工智能 数学 历史 几何学 考古
作者
H. Sharen,Malathy Jawahar,L. Jani Anbarasi,Vinayakumar Ravi,Norah Saleh Alghamdi,Wael Suliman
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 106037-106037 被引量:2
标识
DOI:10.1016/j.bspc.2024.106037
摘要

Early detection is essential for the successful removal of all malignant lesions from the body, and skin cancer is one of the most widespread cancers globally. In medical image analysis, identifying the diseased area or the region of interest (ROI) significantly relies on advanced network models. Segmenting skin lesions is a strenuous task due to the presence of varied lesion shapes, ambiguous edge borders, low contrast, and presences of artifacts and noises. Performing manual identification of ROI on a large-scale skin lesion assessment is challenging. This study proposes enhanced FPN and U-Net network models for supervised skin lesion segmentation. The study investigates eight Convolutional Neural Network architectures, including U-Net (classic), U-Net + MobileNet, U-Net + InceptionV3, U-Net + DenseNet121, FPN(classic), FPN + MobileNet, FPN + InceptionV3, and FPN + DenseNet121. The performance of these architectures is evaluated using three optimizers (RMSProp, Adam, and SGD) on the ISIC 2016 dataset. The evaluation metrics include accuracy, IoU, and Dice coefficients on the testing dataset. The experimental findings demonstrate that the FPN architecture with DenseNet121 as the backbone encoder and the U-Net architecture with MobileNet as the backbone encoder achieved the highest dice coefficient of 0.93, accuracy of 0.96, and IoU of 0.87. Our proposed solution for enhancing skin lesion segmentation is called FDUM-Net, which is a combination of enhanced FPN with DenseNet as encoder and U-Net with MobileNet designed to capture high-level information and context for more accurate results. These outcomes surpass the performance of previous research and can assist dermatologists in diagnosing skin cancer more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助SCI1区采纳,获得10
刚刚
充电宝应助shuangma采纳,获得10
刚刚
厚朴大师完成签到,获得积分10
刚刚
1秒前
1秒前
bluelululu完成签到,获得积分10
1秒前
aaswsdw发布了新的文献求助10
1秒前
Amadeus发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
开心向真完成签到,获得积分10
2秒前
wusj120发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
Jolly_joker发布了新的文献求助10
3秒前
Jolly_joker发布了新的文献求助10
3秒前
Jolly_joker发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Jolly_joker发布了新的文献求助10
4秒前
Jolly_joker发布了新的文献求助10
4秒前
4秒前
4秒前
Jolly_joker发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
英姑应助独特的莫英采纳,获得10
6秒前
房天川发布了新的文献求助10
6秒前
王春起发布了新的文献求助10
6秒前
诸葛书虫完成签到,获得积分10
7秒前
wusj120完成签到,获得积分10
7秒前
Jolly_joker发布了新的文献求助10
8秒前
Jolly_joker发布了新的文献求助10
8秒前
Jolly_joker发布了新的文献求助10
8秒前
Jolly_joker发布了新的文献求助10
8秒前
Jolly_joker发布了新的文献求助10
8秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464759
求助须知:如何正确求助?哪些是违规求助? 3058048
关于积分的说明 9059613
捐赠科研通 2748216
什么是DOI,文献DOI怎么找? 1507774
科研通“疑难数据库(出版商)”最低求助积分说明 696693
邀请新用户注册赠送积分活动 696340