FDUM-Net: An enhanced FPN and U-Net architecture for skin lesion segmentation

网(多面体) 分割 卷积神经网络 计算机科学 背景(考古学) 编码器 掷骰子 深度学习 Sørensen–骰子系数 人工智能 模式识别(心理学) 感兴趣区域 网络体系结构 图像分割 计算机视觉 数学 几何学 古生物学 计算机安全 生物 操作系统
作者
H. Sharen,Malathy Jawahar,L. Jani Anbarasi,Vinayakumar Ravi,Norah Saleh Alghamdi,Wael Suliman
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 106037-106037 被引量:16
标识
DOI:10.1016/j.bspc.2024.106037
摘要

Early detection is essential for the successful removal of all malignant lesions from the body, and skin cancer is one of the most widespread cancers globally. In medical image analysis, identifying the diseased area or the region of interest (ROI) significantly relies on advanced network models. Segmenting skin lesions is a strenuous task due to the presence of varied lesion shapes, ambiguous edge borders, low contrast, and presences of artifacts and noises. Performing manual identification of ROI on a large-scale skin lesion assessment is challenging. This study proposes enhanced FPN and U-Net network models for supervised skin lesion segmentation. The study investigates eight Convolutional Neural Network architectures, including U-Net (classic), U-Net + MobileNet, U-Net + InceptionV3, U-Net + DenseNet121, FPN(classic), FPN + MobileNet, FPN + InceptionV3, and FPN + DenseNet121. The performance of these architectures is evaluated using three optimizers (RMSProp, Adam, and SGD) on the ISIC 2016 dataset. The evaluation metrics include accuracy, IoU, and Dice coefficients on the testing dataset. The experimental findings demonstrate that the FPN architecture with DenseNet121 as the backbone encoder and the U-Net architecture with MobileNet as the backbone encoder achieved the highest dice coefficient of 0.93, accuracy of 0.96, and IoU of 0.87. Our proposed solution for enhancing skin lesion segmentation is called FDUM-Net, which is a combination of enhanced FPN with DenseNet as encoder and U-Net with MobileNet designed to capture high-level information and context for more accurate results. These outcomes surpass the performance of previous research and can assist dermatologists in diagnosing skin cancer more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽海云发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
H71000A完成签到 ,获得积分10
1秒前
fxd发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
兮颜完成签到,获得积分10
2秒前
哒丝萌德发布了新的文献求助10
2秒前
科研通AI6应助bloom采纳,获得10
2秒前
乐观紫霜发布了新的文献求助10
2秒前
zz发布了新的文献求助10
3秒前
sx发布了新的文献求助10
3秒前
HAI完成签到,获得积分10
3秒前
椰子水发布了新的文献求助10
3秒前
3秒前
3秒前
赤侯发布了新的文献求助10
3秒前
Jared应助Vicky采纳,获得10
3秒前
pp-doctor完成签到,获得积分10
4秒前
皮皮完成签到,获得积分10
4秒前
zhu发布了新的文献求助10
4秒前
我是老大应助戚薇采纳,获得10
4秒前
顺利毕业完成签到,获得积分10
4秒前
5秒前
alkali发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
方黎昕完成签到,获得积分10
5秒前
5秒前
5秒前
愉快的芒果完成签到,获得积分10
5秒前
英俊的铭应助rachel采纳,获得10
5秒前
6秒前
李健的小迷弟应助孙傲采纳,获得10
6秒前
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401