亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VirusImmu: a novel ensemble machine learning approach for viral immunogenicity prediction

免疫原性 计算机科学 表位 人工智能 机器学习 试验装置 计算生物学 集成学习 抗体 生物 免疫学
作者
Jing Li,Zhongpeng Zhao,Chi-Jen Tai,Taixiang Sun,Lingyun Tan,Xinyu Li,He Wang,Dongliang Zhang,Jing Zhang
标识
DOI:10.1101/2023.11.23.568426
摘要

Abstract Background The viruses threats provoke concerns regarding their sustained epidemic transmission, making the development of vaccines particularly important. In the prolonged and costly process of vaccine development, the most important initial step is to identify protective immunogens. Machine learning (ML) approaches are productive in analyzing big data such as microbial proteomes, and can remarkably reduce the cost of experimental work in developing novel vaccine candidates. Results We intensively evaluated the immunogenicity prediction power of eight commonly-used ML methods by random sampling cross validation on a large dataset consisting of known viral immunogens and non-immunogens we manually curated from the public domain. XGBoost, kNN and RF showed the strongest predictive power. We then proposed a novel soft-voting based ensemble approach (VirusImmu), which demonstrated a powerful and stable capability for viral immunogenicity prediction across the test set and external test set irrespective of protein sequence length. VirusImmu was successfully applied to facilitate identifying linear B cell epitopes against African Swine Fever Virus as confirmed by indirect ELISA in vitro. Conclusions VirusImmu exhibited tremendous potentials in predicting immunogenicity of viral protein segments. It is freely accessible at https://github.com/zhangjbig/VirusImmu .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
dawn发布了新的文献求助10
12秒前
善学以致用应助Fluoxtine采纳,获得10
26秒前
黑鲨完成签到 ,获得积分10
26秒前
Ava应助粗暴的坤采纳,获得10
29秒前
瘦瘦的迎南完成签到 ,获得积分10
31秒前
32秒前
谷雨秋发布了新的文献求助10
35秒前
45秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
J_Xu完成签到 ,获得积分10
1分钟前
所所应助凛玖niro采纳,获得10
1分钟前
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
霖槿完成签到,获得积分10
1分钟前
1分钟前
十八完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
liuliu发布了新的文献求助30
3分钟前
3分钟前
烟花应助Li采纳,获得10
3分钟前
liuliu完成签到,获得积分20
3分钟前
3分钟前
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
上官若男应助Marshall采纳,获得10
4分钟前
4分钟前
4分钟前
Marshall发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587