CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 语言学 哲学 计算机安全 程序设计语言 操作系统
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
段ddd发布了新的文献求助10
刚刚
美满朝雪发布了新的文献求助10
1秒前
小蘑菇应助李凤凤采纳,获得10
1秒前
kk完成签到,获得积分10
1秒前
木头完成签到,获得积分10
2秒前
kumo完成签到 ,获得积分10
2秒前
lishui完成签到 ,获得积分10
2秒前
古月完成签到,获得积分10
2秒前
不负完成签到,获得积分10
3秒前
else发布了新的文献求助20
3秒前
木头发布了新的文献求助10
4秒前
5秒前
hzhang完成签到,获得积分10
6秒前
万能图书馆应助Zzz采纳,获得10
6秒前
6秒前
7秒前
脑洞疼应助林生采纳,获得30
7秒前
斯文败类应助Journey采纳,获得10
8秒前
绝不拖延完成签到,获得积分10
8秒前
大气盼柳关注了科研通微信公众号
8秒前
圆梦完成签到,获得积分10
8秒前
不太想学习完成签到 ,获得积分10
9秒前
9秒前
充电宝应助段ddd采纳,获得10
10秒前
木子完成签到,获得积分10
10秒前
孤独元容完成签到 ,获得积分10
11秒前
ping777755完成签到 ,获得积分10
11秒前
成是非完成签到,获得积分10
12秒前
一大罐发布了新的文献求助10
12秒前
杨小杨发布了新的文献求助40
12秒前
圆梦发布了新的文献求助10
12秒前
HuLAn完成签到,获得积分10
12秒前
诺。完成签到 ,获得积分20
13秒前
王晓雪完成签到,获得积分10
13秒前
13秒前
14秒前
小王同学完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835