CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 哲学 程序设计语言 操作系统 语言学 计算机安全
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeiBao发布了新的文献求助10
刚刚
1秒前
刘桑桑发布了新的文献求助10
1秒前
月月完成签到,获得积分10
1秒前
shin0324完成签到,获得积分10
1秒前
空山新雨完成签到,获得积分10
1秒前
禹映安发布了新的文献求助30
1秒前
大圈圈完成签到,获得积分10
2秒前
1xsz完成签到,获得积分10
2秒前
TangWang完成签到 ,获得积分10
2秒前
小徐801完成签到,获得积分10
2秒前
2秒前
3秒前
Ryan发布了新的文献求助10
4秒前
4秒前
从容不弱完成签到,获得积分10
4秒前
4秒前
wan应助cong666采纳,获得10
5秒前
yeyeye发布了新的文献求助10
5秒前
qibing Gu完成签到,获得积分20
5秒前
彩色的老五完成签到,获得积分10
5秒前
帅气的小鸭子完成签到,获得积分10
5秒前
OnionJJ完成签到,获得积分10
6秒前
Nash完成签到,获得积分10
6秒前
Kuhaku完成签到,获得积分10
6秒前
Jess完成签到,获得积分10
6秒前
tom完成签到,获得积分10
6秒前
RA000完成签到,获得积分10
7秒前
cc完成签到 ,获得积分10
7秒前
怕黑鲂发布了新的文献求助50
8秒前
科研通AI6应助zzj512682701采纳,获得10
8秒前
SKSK发布了新的文献求助10
8秒前
HHHHH完成签到,获得积分10
8秒前
文静的如娆完成签到,获得积分10
8秒前
典雅的觅儿完成签到,获得积分10
9秒前
科研的神龙猫完成签到,获得积分10
9秒前
9秒前
si发布了新的文献求助10
9秒前
guoguoguo完成签到,获得积分20
10秒前
小靳发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632