CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 哲学 程序设计语言 操作系统 语言学 计算机安全
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星新完成签到,获得积分20
2秒前
2秒前
Lucas应助安安稳稳采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
萍水关注了科研通微信公众号
3秒前
3秒前
Sophist完成签到,获得积分10
4秒前
安装地方完成签到,获得积分10
4秒前
许可991127完成签到,获得积分10
4秒前
xiaoxiao完成签到 ,获得积分10
4秒前
梁皓然发布了新的文献求助10
5秒前
pluto应助疯狂小妈采纳,获得10
5秒前
bzlish发布了新的文献求助10
5秒前
5秒前
酷波er应助无可无不可采纳,获得10
5秒前
我真的1饿死了完成签到,获得积分10
5秒前
浮游应助星新采纳,获得10
6秒前
Z01完成签到,获得积分10
6秒前
8秒前
momeak完成签到,获得积分10
8秒前
秧泽发布了新的文献求助10
9秒前
Jasper应助咯咚采纳,获得10
9秒前
11完成签到,获得积分10
10秒前
稀饭红红儿完成签到,获得积分10
10秒前
mark发布了新的文献求助10
10秒前
灰太狼大王完成签到,获得积分10
10秒前
蛋炒饭完成签到 ,获得积分10
10秒前
11秒前
团结完成签到 ,获得积分10
11秒前
青年才俊发布了新的文献求助10
11秒前
11秒前
科目三应助Z01采纳,获得10
11秒前
知性的绫完成签到,获得积分10
12秒前
科研通AI6应助xuan采纳,获得10
12秒前
你还年轻不能吃苦完成签到,获得积分10
12秒前
林水承发布了新的文献求助10
13秒前
淡然水绿发布了新的文献求助10
13秒前
11111发布了新的文献求助10
14秒前
foregan发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858