亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 哲学 程序设计语言 操作系统 语言学 计算机安全
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
37秒前
shhoing应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得10
37秒前
Ren完成签到 ,获得积分10
54秒前
caowen完成签到 ,获得积分10
56秒前
科研通AI6应助羟基磷酸钙采纳,获得10
1分钟前
2分钟前
杰尼龟的鱼完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
上官若男应助羟基磷酸钙采纳,获得10
3分钟前
alter_mu完成签到,获得积分10
3分钟前
4分钟前
4分钟前
大胆的音响完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
AllIN发布了新的文献求助10
4分钟前
羟基磷酸钙完成签到 ,获得积分10
4分钟前
wanci应助Trip_wyb采纳,获得10
4分钟前
在水一方应助AllIN采纳,获得10
5分钟前
5分钟前
Trip_wyb发布了新的文献求助10
5分钟前
小欧完成签到 ,获得积分10
5分钟前
能干的荆完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助Li采纳,获得10
6分钟前
7分钟前
范ER完成签到 ,获得积分10
7分钟前
科研通AI2S应助Li采纳,获得10
8分钟前
慕青应助aki采纳,获得10
8分钟前
8分钟前
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
开心每一天完成签到 ,获得积分10
8分钟前
故意的小萱完成签到,获得积分20
9分钟前
科研通AI2S应助Li采纳,获得10
9分钟前
瑾瑜玉完成签到 ,获得积分10
10分钟前
FashionBoy应助NatureEnergy采纳,获得30
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558537
求助须知:如何正确求助?哪些是违规求助? 4643629
关于积分的说明 14671295
捐赠科研通 4584946
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1460000