CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 哲学 程序设计语言 操作系统 语言学 计算机安全
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小L发布了新的文献求助20
刚刚
pishuang发布了新的文献求助10
刚刚
1秒前
Hh发布了新的文献求助10
1秒前
丘比特应助czz014采纳,获得10
2秒前
3秒前
栀子完成签到,获得积分10
3秒前
3秒前
嘻嘻哈哈应助Xiaoxiao采纳,获得20
4秒前
小乌龟完成签到,获得积分10
4秒前
挽忆逍遥完成签到 ,获得积分10
4秒前
研究侠完成签到,获得积分10
5秒前
coolplex发布了新的文献求助10
5秒前
lsh发布了新的文献求助10
5秒前
5秒前
Owen应助哈哈哈哈采纳,获得10
6秒前
6秒前
QXR完成签到,获得积分10
6秒前
6秒前
小手冰凉完成签到,获得积分10
6秒前
共享精神应助陈柚瑾采纳,获得10
6秒前
CodeCraft应助鲤鱼凡松采纳,获得10
7秒前
琳琳发布了新的文献求助20
7秒前
完美世界应助mdjinij采纳,获得10
7秒前
顶呱呱完成签到 ,获得积分10
7秒前
酷波er应助zhuzhu的江湖采纳,获得10
7秒前
7秒前
wanci应助耶耶粘豆包采纳,获得10
8秒前
杳子尧发布了新的文献求助10
9秒前
威武外套完成签到,获得积分10
9秒前
充电宝应助cun采纳,获得10
10秒前
Mayily完成签到,获得积分10
10秒前
JamesPei应助DTP采纳,获得10
10秒前
梨子发布了新的文献求助200
10秒前
11秒前
田様应助Azyyyy采纳,获得10
11秒前
12秒前
impala发布了新的文献求助10
12秒前
12秒前
归尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874