CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 哲学 程序设计语言 操作系统 语言学 计算机安全
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phylicia发布了新的文献求助10
刚刚
萝卜完成签到,获得积分10
刚刚
刚刚
sjj完成签到,获得积分10
1秒前
只道寻常发布了新的文献求助10
1秒前
灵巧坤完成签到,获得积分20
2秒前
澹台灭明完成签到,获得积分10
2秒前
含蓄的鹤发布了新的文献求助10
2秒前
K. G.完成签到,获得积分0
2秒前
张云雷的大闸蟹完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
化学狗完成签到,获得积分10
4秒前
yud完成签到 ,获得积分10
4秒前
5秒前
拼搏思卉发布了新的文献求助10
5秒前
6秒前
雨碎寒江完成签到,获得积分10
6秒前
7秒前
会飞的木头完成签到,获得积分10
7秒前
雪白涵山发布了新的文献求助20
7秒前
shouyu29应助MADKAI采纳,获得10
7秒前
Seiswan发布了新的文献求助10
7秒前
小小菜鸟完成签到,获得积分10
8秒前
8秒前
西西弗斯完成签到,获得积分10
8秒前
KT2440完成签到,获得积分10
9秒前
顾阿秀发布了新的文献求助10
9秒前
9秒前
9秒前
gnr2000完成签到,获得积分0
9秒前
10秒前
10秒前
BareBear应助赖道之采纳,获得10
10秒前
LEMON完成签到,获得积分10
10秒前
Ava应助buuyoo采纳,获得10
11秒前
情怀应助liuwei采纳,获得10
11秒前
aaefv完成签到,获得积分10
11秒前
小小菜鸟发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762