亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 语言学 哲学 计算机安全 程序设计语言 操作系统
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meyako完成签到 ,获得积分10
1秒前
2秒前
123456发布了新的文献求助10
7秒前
健壮慕梅完成签到,获得积分20
8秒前
14秒前
支水云完成签到,获得积分10
15秒前
沈从云发布了新的文献求助10
18秒前
健壮慕梅发布了新的文献求助20
20秒前
heisa完成签到,获得积分10
21秒前
21秒前
沛沛完成签到,获得积分10
22秒前
Wfmmm完成签到,获得积分10
22秒前
兼听则明发布了新的文献求助10
26秒前
李爱国应助健壮慕梅采纳,获得10
29秒前
32秒前
39秒前
陆上飞发布了新的文献求助10
46秒前
Swilder完成签到 ,获得积分10
49秒前
传奇3应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
沈从云完成签到 ,获得积分10
52秒前
meimei完成签到 ,获得积分10
55秒前
无心的采萱完成签到,获得积分10
56秒前
jade完成签到,获得积分10
57秒前
陆上飞完成签到,获得积分10
57秒前
欣欣每天开开心心完成签到 ,获得积分10
58秒前
58秒前
俭朴的乐巧完成签到 ,获得积分10
1分钟前
兼听则明完成签到,获得积分10
1分钟前
1分钟前
非典型骨质疏松完成签到,获得积分10
1分钟前
阔达冰兰发布了新的文献求助10
1分钟前
1分钟前
两棵树完成签到,获得积分10
1分钟前
xiaoleihu完成签到 ,获得积分10
1分钟前
1分钟前
眼镜胖子完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176