CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification

计算机科学 自动汇总 人工智能 特征提取 特征学习 语义学(计算机科学) 冗余(工程) 钥匙(锁) 特征(语言学) 机器学习 模式识别(心理学) 学习迁移 数据挖掘 哲学 程序设计语言 操作系统 语言学 计算机安全
作者
Yibo Zhao,Jianjun Liu,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:65
标识
DOI:10.1109/tgrs.2023.3336471
摘要

In recent years, deep learning-based methods have been extensively utilized in remote sensing image scene classification and have achieved remarkable performance. The wide geographical coverage and resolution differences of scene images result in significant within-class diversity and between-class similarity, hindering the further improvement of classification accuracy. Attention-based methods automatically estimate the importance of local regions by learning weight assignments, which effectively enhance the feature extraction capability of the network. However, methods that solely rely on the network to automatically learn weight assignments may introduce biases in the attention calculations. By analyzing the specific contribution of local features to the key components of global semantics, we propose a collaborative dictionary learning network (CDLNet). CDLNet utilizes the collaborative representation method to decompose global features into a set of key semantic vectors to guide the attention learning process of the network. Specifically, we design a semantic summarization module (SSM), which reconstructs global semantic features by optimizing a low-redundancy dictionary. Next, we propose a global semantic attention module (GSAM), which calculates the contribution of local features to the global feature key information based on their correlation with the reconstructed key semantic set. Finally, an attention transfer loss is introduced to further enhance the attention of low-level feature maps. The experimental results on three publicly available datasets demonstrate that CDLNet can effectively improve within-class diversity and between-class similarity by optimizing the attention learning of the network, thereby achieving great promotion in comparison with state-of-the-art methods. The implementation is publicly available at https://github.com/liuofficial/CDLNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老张水泥建材完成签到,获得积分10
1秒前
芊芊完成签到 ,获得积分10
1秒前
2秒前
jdp完成签到,获得积分10
2秒前
5秒前
sdf发布了新的文献求助10
6秒前
7秒前
啊印发布了新的文献求助10
10秒前
liu发布了新的文献求助10
10秒前
复杂斓发布了新的文献求助10
11秒前
左手树完成签到,获得积分10
12秒前
风趣雪卉完成签到 ,获得积分10
12秒前
Lucas应助Painkiller_采纳,获得10
12秒前
NN完成签到 ,获得积分10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
传奇3应助Sir.夏季风采纳,获得10
15秒前
wlscj应助科研通管家采纳,获得20
15秒前
劳恩特应助科研通管家采纳,获得10
15秒前
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
李必航给李必航的求助进行了留言
16秒前
16秒前
所所应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
jjyy应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648