Evolutionary multi-objective attribute community detection based on similarity fusion strategy with central nodes

计算机科学 相似性(几何) 节点(物理) 模块化(生物学) 数据挖掘 师(数学) 进化算法 人工智能 算法 数学 遗传学 结构工程 生物 算术 图像(数学) 工程类
作者
Weitong Zhang,Kun Zhao,Ronghua Shang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:150: 111101-111101
标识
DOI:10.1016/j.asoc.2023.111101
摘要

In recent years, evolutionary multi-objective based community detection algorithms are widely used in attribute networks, but such algorithms usually ignore the attributes between nodes and may lead to incorrect node division. Therefore, this paper proposes an evolutionary multi-objective attribute community detection based on similarity fusion strategy with central nodes. First, this paper proposes a pre-processing of similarity fusion to completely utilize node and topology information, the topological similarity matrix of the network is effectively combined with the attribute similarity matrix to obtain the fusion similarity matrix, and finds central nodes based on node assignment of the fusion similarity matrix. Then, the pre-division set of the attribute network is selected by central nodes and the label update equation is designed. In the scheme of evolutionary algorithm, using the community results initialized for the network after the label update can speed up the iterative process of the algorithm. Finally, a modularity-based community integration strategy is proposed to correct community detection results of attribute network based on modularity of neighbor nodes. Comparing the effectiveness of the proposed algorithm with four excellent community detection algorithms for attribute networks on fifteen real networks and six synthetic networks, the proposed algorithm can achieve high division accuracy in most networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷青发布了新的文献求助30
1秒前
神勇从波发布了新的文献求助20
1秒前
王大萌发布了新的文献求助10
2秒前
crazy完成签到,获得积分10
3秒前
wzd发布了新的文献求助10
3秒前
3秒前
5秒前
闪电发布了新的文献求助10
8秒前
酷波er应助sullivan采纳,获得10
8秒前
方圆几里完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
心点发布了新的文献求助10
13秒前
今晚打母驴应助xxiao采纳,获得50
14秒前
平凡之路应助JACk采纳,获得10
14秒前
15秒前
不配.应助神勇从波采纳,获得20
15秒前
wang发布了新的文献求助10
16秒前
丫丫完成签到,获得积分10
16秒前
深情安青应助闪电采纳,获得10
16秒前
17秒前
zheubdkk发布了新的文献求助10
17秒前
木三亲完成签到 ,获得积分10
17秒前
17秒前
小粘豆包发布了新的文献求助10
20秒前
21秒前
lala发布了新的文献求助10
21秒前
22秒前
jjjwln完成签到,获得积分10
22秒前
思源应助Aiden采纳,获得10
23秒前
情怀应助啾啾咪咪采纳,获得10
25秒前
25秒前
27秒前
27秒前
28秒前
yaoenhao完成签到,获得积分20
29秒前
上官若男应助杨金城采纳,获得10
31秒前
ailemonmint完成签到 ,获得积分10
32秒前
yaoenhao发布了新的文献求助10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231127
求助须知:如何正确求助?哪些是违规求助? 2878307
关于积分的说明 8205546
捐赠科研通 2545770
什么是DOI,文献DOI怎么找? 1375359
科研通“疑难数据库(出版商)”最低求助积分说明 647390
邀请新用户注册赠送积分活动 622448