Profiling emerging micropollutants in urban stormwater runoff using suspect and non-target screening via high-resolution mass spectrometry

雨水 污染物 第一次冲洗 环境科学 地表径流 水质 环境化学 城市径流 化学 有机化学 生态学 生物
作者
Daeho Kang,Daeun Yun,Kyung Hwa Cho,Sang‐Soo Baek,Junho Jeon
出处
期刊:Chemosphere [Elsevier BV]
卷期号:352: 141402-141402 被引量:8
标识
DOI:10.1016/j.chemosphere.2024.141402
摘要

Urban surface runoff contains chemicals that can negatively affect water quality. Urban runoff studies have determined the transport dynamics of many legacy pollutants. However, less attention has been paid to determining the first-flush effects (FFE) of emerging micropollutants using suspect and non-target screening (SNTS). Therefore, this study employed suspect and non-target analyses using liquid chromatography-high resolution mass spectrometry to detect emerging pollutants in urban receiving waters during stormwater events. Time-interval sampling was used to determine occurrence trends during stormwater events. Suspect screening tentatively identified 65 substances, then, their occurrence trend was grouped using correlation analysis. Non-target peaks were prioritized through hierarchical cluster analysis, focusing on the first flush-concentrated peaks. This approach revealed 38 substances using in silico identification. Simultaneously, substances identified through homologous series observation were evaluated for their observed trends in individual events using network analysis. The results of SNTS were normalized through internal standards to assess the FFE, and the most of tentatively identified substances showed observed FFE. Our findings suggested that diverse pollutants that could not be covered by target screening alone entered urban water through stormwater runoff during the first flush. This study showcases the applicability of the SNTS in evaluating the FFE of urban pollutants, offering insights for first-flush stormwater monitoring and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainielove0215完成签到,获得积分0
1秒前
跳跃的白云完成签到 ,获得积分10
1秒前
帅气的马里奥完成签到 ,获得积分10
2秒前
灿华完成签到 ,获得积分10
2秒前
无为完成签到 ,获得积分10
3秒前
Rainielove0215发布了新的文献求助200
4秒前
完美世界应助hahaha采纳,获得10
8秒前
正方形圆完成签到,获得积分20
9秒前
jiangqin123完成签到 ,获得积分10
9秒前
9秒前
Xenia完成签到 ,获得积分10
12秒前
14秒前
hyjcs完成签到,获得积分0
14秒前
细心的代天完成签到 ,获得积分10
14秒前
Orange应助朴实的面包采纳,获得10
17秒前
gzf完成签到 ,获得积分10
18秒前
锅包肉完成签到 ,获得积分10
18秒前
海荣完成签到,获得积分10
19秒前
hahaha发布了新的文献求助10
20秒前
21秒前
22秒前
丘比特应助正方形圆采纳,获得10
22秒前
desperado完成签到 ,获得积分10
26秒前
27秒前
27秒前
dreamwalk完成签到 ,获得积分10
28秒前
在水一方完成签到 ,获得积分0
30秒前
31秒前
jia完成签到 ,获得积分10
31秒前
c123完成签到 ,获得积分10
32秒前
hahaha完成签到,获得积分10
32秒前
JJ完成签到,获得积分10
32秒前
fomo完成签到,获得积分10
33秒前
朴实的面包完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
35秒前
张兔兔完成签到,获得积分10
40秒前
wp4455777完成签到,获得积分10
42秒前
陈JY完成签到 ,获得积分10
44秒前
xiaofu完成签到,获得积分10
46秒前
Chimmy发布了新的文献求助10
48秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008786
求助须知:如何正确求助?哪些是违规求助? 3548464
关于积分的说明 11298867
捐赠科研通 3283080
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220