Automatic Radiology Report Generator Using Transformer With Contrast-Based Image Enhancement

计算机科学 计算机视觉 人工智能 对比度增强 变压器 发电机(电路理论) 磁共振成像 放射科 电气工程 医学 电压 工程类 物理 量子力学 功率(物理)
作者
Hilya Tsaniya,Chastine Fatichah,Nanik Suciati
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 25429-25442 被引量:3
标识
DOI:10.1109/access.2024.3364373
摘要

Writing radiology reports based on radiographic images is a time-consuming task that demands the expertise of skilled radiologists. Consequently, the integration of technology capable of automated report generation would be advantageous. Developing a coherent predictive text is the main challenge in automatic report generation. It is necessary to develop methods that can increase the relevance of features in producing predictive text. This study constructed a medical report generator model using the transformer approach and image enhancement implementation. To leverage the visual and semantic features, an approach to enhance the noise-prone nature of the medical image is explored in this study along with the transformers method to generate a radiology report based on Chest X-ray images. Four contrast-based image enhancement methods were used to investigate the effect of image enhancement techniques on the radiology report generator. The encoder-decoder model is used with text feature embedding using Bidirectional Encoder Representation from Transformer (BERT) and visual feature extraction utilizing a pre-trained model ChexNet and Multi-Head Attention (MHA) mechanism. The performance of the MHA model with gamma correction is 5% in better with a 0.377 value using the Bilingual Assessment Understudy (BLEU) with 4 n-gram evaluation. MHA also produces 15% better results with a 0.412 value than the baseline model. This method is able to outperform the baseline model and other previous works. It can be concluded that the use of transformer MHA encoder layer and BERT is effective in leveraging visual and text features. Additionally, the inclusion of an image enhancement approach has been found to have a positive impact on the model's performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lyy发布了新的文献求助10
1秒前
神勇的邑发布了新的文献求助10
1秒前
tamaco完成签到,获得积分10
1秒前
情怀应助曦子曦子采纳,获得10
2秒前
3秒前
艺阳完成签到,获得积分10
3秒前
zhuanghj5发布了新的文献求助10
3秒前
4秒前
lzy发布了新的文献求助10
4秒前
4秒前
lyt发布了新的文献求助10
5秒前
5秒前
wanci应助乐观的雨采纳,获得10
5秒前
跨进行发布了新的文献求助10
6秒前
6秒前
7秒前
zty568发布了新的文献求助10
8秒前
香蕉子骞发布了新的文献求助10
8秒前
默默的巧蕊完成签到,获得积分10
9秒前
坚强长颈鹿完成签到 ,获得积分10
9秒前
9秒前
典雅的凝天完成签到,获得积分20
9秒前
乐正成危发布了新的文献求助10
10秒前
519完成签到,获得积分10
10秒前
肥四完成签到,获得积分10
10秒前
joker_k完成签到,获得积分10
11秒前
老迟到的土豆完成签到 ,获得积分20
11秒前
赘婿应助瓜兮兮CYY采纳,获得10
13秒前
DKE完成签到,获得积分10
13秒前
所所应助lyt采纳,获得10
14秒前
onfire发布了新的文献求助10
14秒前
小马甲应助lushier采纳,获得10
15秒前
15秒前
今后应助魁梧的易形采纳,获得10
16秒前
17秒前
17秒前
Fan完成签到,获得积分10
18秒前
科研通AI5应助WendyWen采纳,获得30
18秒前
111完成签到,获得积分20
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197