Cross-domain tool wear condition monitoring via residual attention hybrid adaptation network

残余物 学习迁移 特征(语言学) 计算机科学 机械加工 适应(眼睛) 领域(数学分析) 人工智能 机器学习 嵌入 依赖关系(UML) 工厂(面向对象编程) 数据挖掘 工程类 算法 机械工程 数学分析 语言学 哲学 物理 数学 光学 程序设计语言
作者
Zhiwen Huang,Weidong Li,Jianmin Zhu,Lihui Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:72: 406-423 被引量:7
标识
DOI:10.1016/j.jmsy.2023.12.003
摘要

Intelligent models for tool wear condition monitoring (TWCM) have been extensively researched. However, in industrial scenarios, limited acquired monitoring signals and variations of machining parameters lead to insufficient training samples and data distribution shifts for the models. To address the issues, this research presents a novel residual attention hybrid adaptation network (RAHAN) model based on a residual attention network (ResAttNet) and a hybrid adaptation strategy. In the RAHAN model, by integrating a channel attention mechanism and deep residual modules, ResAttNet is designed as a feature extractor to acquire features from monitoring signals for tool wear conditions. Embedding subdomain adaptation into a condition recognizer while establishing separate adversarial learning in a domain obfuscator, the hybrid adaptation strategy is developed to eliminate global distribution shifts and align local distributions of each tool wear phase simultaneously. Six migration tasks under a laboratory and two factory machining platforms were conducted to evaluate the effectiveness of the RAHAN model. Compared with a baseline model, four ablation models, and six state-of-the-art transfer learning models, the RAHAN model achieved the highest average accuracy of 92.70% on six migration tasks. Furthermore, the RAHAN model shows clearer feature representations of each tool wear condition than other compared models. The comparative results demonstrate that the RAHAN model has superior transferability and therefore can be considered as a good potential solution to support cross-domain TWCM under different machining processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuky发布了新的文献求助10
刚刚
默默向雪完成签到,获得积分0
刚刚
YJJ完成签到,获得积分10
刚刚
刚刚
刚刚
斯文败类应助Demonmaster采纳,获得10
1秒前
甜甜完成签到 ,获得积分10
1秒前
2秒前
我是老大应助网再快点采纳,获得10
2秒前
2秒前
束负允三金完成签到,获得积分10
2秒前
yookia举报小海狸求助涉嫌违规
3秒前
3秒前
p二完成签到,获得积分10
3秒前
情怀应助优美的幻梦采纳,获得10
4秒前
5秒前
5秒前
无所归兮应助烟雨梦兮采纳,获得10
5秒前
lixy完成签到,获得积分10
6秒前
6秒前
大模型应助八一采纳,获得10
6秒前
6秒前
6秒前
FashionBoy应助YJJ采纳,获得10
6秒前
夕诙完成签到,获得积分0
6秒前
腼腆的以蕊完成签到,获得积分20
7秒前
7秒前
钟小凯完成签到 ,获得积分10
8秒前
10秒前
莫西莫西发布了新的文献求助10
10秒前
一只小鸮完成签到,获得积分20
11秒前
顺利紫山发布了新的文献求助10
11秒前
清脆的青寒完成签到,获得积分10
11秒前
爆米花应助Johnny采纳,获得10
12秒前
12秒前
李健的小迷弟应助spy采纳,获得10
12秒前
大胆的致远完成签到 ,获得积分10
13秒前
13秒前
wlqc完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600