Cross-domain tool wear condition monitoring via residual attention hybrid adaptation network

残余物 学习迁移 特征(语言学) 计算机科学 机械加工 适应(眼睛) 领域(数学分析) 人工智能 机器学习 嵌入 依赖关系(UML) 工厂(面向对象编程) 数据挖掘 工程类 算法 机械工程 数学分析 语言学 哲学 物理 数学 光学 程序设计语言
作者
Zhiwen Huang,Weidong Li,Jianmin Zhu,Lihui Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 406-423 被引量:7
标识
DOI:10.1016/j.jmsy.2023.12.003
摘要

Intelligent models for tool wear condition monitoring (TWCM) have been extensively researched. However, in industrial scenarios, limited acquired monitoring signals and variations of machining parameters lead to insufficient training samples and data distribution shifts for the models. To address the issues, this research presents a novel residual attention hybrid adaptation network (RAHAN) model based on a residual attention network (ResAttNet) and a hybrid adaptation strategy. In the RAHAN model, by integrating a channel attention mechanism and deep residual modules, ResAttNet is designed as a feature extractor to acquire features from monitoring signals for tool wear conditions. Embedding subdomain adaptation into a condition recognizer while establishing separate adversarial learning in a domain obfuscator, the hybrid adaptation strategy is developed to eliminate global distribution shifts and align local distributions of each tool wear phase simultaneously. Six migration tasks under a laboratory and two factory machining platforms were conducted to evaluate the effectiveness of the RAHAN model. Compared with a baseline model, four ablation models, and six state-of-the-art transfer learning models, the RAHAN model achieved the highest average accuracy of 92.70% on six migration tasks. Furthermore, the RAHAN model shows clearer feature representations of each tool wear condition than other compared models. The comparative results demonstrate that the RAHAN model has superior transferability and therefore can be considered as a good potential solution to support cross-domain TWCM under different machining processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到 ,获得积分10
1秒前
赘婿应助章鱼采纳,获得10
1秒前
小小酥被卷了完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Cope发布了新的文献求助30
4秒前
4秒前
Hans发布了新的文献求助10
4秒前
领导范儿应助mm采纳,获得10
6秒前
luoqin发布了新的文献求助10
6秒前
7秒前
11秒前
Cheems完成签到,获得积分10
11秒前
寒冷的如曼完成签到,获得积分10
13秒前
13秒前
music完成签到,获得积分10
13秒前
kkkk发布了新的文献求助10
14秒前
K先生完成签到,获得积分10
16秒前
zyy完成签到,获得积分20
16秒前
明理的蜗牛完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
bkagyin应助Lareina采纳,获得10
18秒前
ZWQ完成签到,获得积分10
19秒前
19秒前
Leslie完成签到,获得积分10
20秒前
王槿完成签到,获得积分20
21秒前
22秒前
22秒前
宝剑葫芦完成签到,获得积分10
22秒前
可靠小懒虫完成签到,获得积分10
23秒前
王平宇发布了新的文献求助10
23秒前
无极微光应助舒适的半芹采纳,获得20
23秒前
爆米花应助幽默身影采纳,获得10
23秒前
顾矜应助oOL采纳,获得10
23秒前
大模型应助义气的巨人采纳,获得10
24秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480496
求助须知:如何正确求助?哪些是违规求助? 4581690
关于积分的说明 14381729
捐赠科研通 4510321
什么是DOI,文献DOI怎么找? 2471702
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431837