Cross-domain tool wear condition monitoring via residual attention hybrid adaptation network

残余物 学习迁移 特征(语言学) 计算机科学 机械加工 适应(眼睛) 领域(数学分析) 人工智能 机器学习 嵌入 依赖关系(UML) 工厂(面向对象编程) 数据挖掘 工程类 算法 机械工程 物理 数学分析 哲学 光学 语言学 程序设计语言 数学
作者
Zhiwen Huang,Weidong Li,Jianmin Zhu,Lihui Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 406-423 被引量:7
标识
DOI:10.1016/j.jmsy.2023.12.003
摘要

Intelligent models for tool wear condition monitoring (TWCM) have been extensively researched. However, in industrial scenarios, limited acquired monitoring signals and variations of machining parameters lead to insufficient training samples and data distribution shifts for the models. To address the issues, this research presents a novel residual attention hybrid adaptation network (RAHAN) model based on a residual attention network (ResAttNet) and a hybrid adaptation strategy. In the RAHAN model, by integrating a channel attention mechanism and deep residual modules, ResAttNet is designed as a feature extractor to acquire features from monitoring signals for tool wear conditions. Embedding subdomain adaptation into a condition recognizer while establishing separate adversarial learning in a domain obfuscator, the hybrid adaptation strategy is developed to eliminate global distribution shifts and align local distributions of each tool wear phase simultaneously. Six migration tasks under a laboratory and two factory machining platforms were conducted to evaluate the effectiveness of the RAHAN model. Compared with a baseline model, four ablation models, and six state-of-the-art transfer learning models, the RAHAN model achieved the highest average accuracy of 92.70% on six migration tasks. Furthermore, the RAHAN model shows clearer feature representations of each tool wear condition than other compared models. The comparative results demonstrate that the RAHAN model has superior transferability and therefore can be considered as a good potential solution to support cross-domain TWCM under different machining processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Esther完成签到,获得积分10
1秒前
jikaku完成签到,获得积分10
1秒前
3秒前
4秒前
4秒前
专注的雪完成签到 ,获得积分10
4秒前
4秒前
4秒前
Smar_zcl应助科研通管家采纳,获得20
4秒前
Smar_zcl应助科研通管家采纳,获得20
4秒前
所所应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
大吧唧应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
okay完成签到,获得积分10
7秒前
7秒前
ZDP完成签到,获得积分20
7秒前
严yee完成签到,获得积分10
9秒前
无极微光应助limi采纳,获得20
9秒前
量子星尘发布了新的文献求助10
10秒前
浮游应助hkh采纳,获得10
10秒前
希望天下0贩的0应助hkh采纳,获得10
10秒前
Owen应助hkh采纳,获得10
10秒前
犹豫的初丹完成签到,获得积分10
10秒前
李健应助糍粑采纳,获得10
10秒前
冷静初彤完成签到,获得积分10
11秒前
Owen应助轩儿轩采纳,获得10
11秒前
叫滚滚发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304