A Few-Shot Medical Image Segmentation Network with Boundary Category Correction

计算机科学 人工智能 分割 图像分割 模式识别(心理学) 计算机视觉 边界(拓扑) 集合(抽象数据类型) 特征(语言学) 数学 数学分析 语言学 哲学 程序设计语言
作者
Zeyu Xu,Xibin Jia,Xiong Guo,Luo Wang,Yiming Zheng
出处
期刊:Lecture Notes in Computer Science 卷期号:: 371-382
标识
DOI:10.1007/978-981-99-8549-4_31
摘要

Accurate medical image segmentation is the foundation of clinical imaging diagnosis and 3D image reconstruction. However, medical images often have low contrast between target objects, greatly affected by organ movement, and suffer from limited annotated samples. To address these issues, we propose a few-shot medical image segmentation network with boundary category correction named Boundary Category Correction Network (BCC-Net). Of overall medical few-shot learning framework, we first propose the Prior Mask Generation Module (PRGM) and Multi-scale Feature Fusion Module (MFFM). PRGM can better localize the query target, while MFFM can adaptively fuse the support set prototype, the prior mask and the query set features at different scales to solve the problem of the spatial inconsistency between the support set and the query set. To improve segmentation accuracy, we construct an additional base-learning branch, which, together with the meta-learning branch, forms the Boundary Category Correction Framework (BCCF). It corrects the boundary category of the meta-learning branch prediction mask by predicting the region of the base categories in the query set. Experiments are conducted on the mainstream ABD-MR and ABD-CT medical image segmentation public datasets. Comparative analysis and ablation experiments are performed with a variety of existing state-of-the-art few-shot segmentation methods. The results demonstrate that the effectiveness of the proposed method with significant enhance the segmentation performance on medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2549360318完成签到,获得积分10
刚刚
刚刚
刚刚
hang发布了新的文献求助10
1秒前
2秒前
dwct发布了新的文献求助10
2秒前
weifeng发布了新的文献求助10
2秒前
2秒前
lubo完成签到,获得积分10
2秒前
2秒前
爰采唐矣发布了新的文献求助10
2秒前
3秒前
3秒前
善学以致用应助小芭乐采纳,获得10
3秒前
拂晓发布了新的文献求助10
3秒前
SciGPT应助feihua采纳,获得10
4秒前
4秒前
4秒前
dongdong发布了新的文献求助10
5秒前
5秒前
sdl发布了新的文献求助10
5秒前
5秒前
沉静丹寒发布了新的文献求助10
6秒前
泽丶完成签到,获得积分10
6秒前
AI_S发布了新的文献求助10
6秒前
情怀应助周常通采纳,获得10
7秒前
知栀完成签到 ,获得积分10
8秒前
lubo发布了新的文献求助10
8秒前
8秒前
SUN发布了新的文献求助10
8秒前
8秒前
8秒前
大个应助石贵远采纳,获得10
8秒前
九点半上课了完成签到,获得积分10
9秒前
hang完成签到,获得积分10
10秒前
10秒前
12秒前
dwct完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224