A Few-Shot Medical Image Segmentation Network with Boundary Category Correction

计算机科学 人工智能 分割 图像分割 模式识别(心理学) 计算机视觉 边界(拓扑) 集合(抽象数据类型) 特征(语言学) 数学 语言学 数学分析 哲学 程序设计语言
作者
Zeyu Xu,Xibin Jia,Xiong Guo,Luo Wang,Yiming Zheng
出处
期刊:Lecture Notes in Computer Science 卷期号:: 371-382
标识
DOI:10.1007/978-981-99-8549-4_31
摘要

Accurate medical image segmentation is the foundation of clinical imaging diagnosis and 3D image reconstruction. However, medical images often have low contrast between target objects, greatly affected by organ movement, and suffer from limited annotated samples. To address these issues, we propose a few-shot medical image segmentation network with boundary category correction named Boundary Category Correction Network (BCC-Net). Of overall medical few-shot learning framework, we first propose the Prior Mask Generation Module (PRGM) and Multi-scale Feature Fusion Module (MFFM). PRGM can better localize the query target, while MFFM can adaptively fuse the support set prototype, the prior mask and the query set features at different scales to solve the problem of the spatial inconsistency between the support set and the query set. To improve segmentation accuracy, we construct an additional base-learning branch, which, together with the meta-learning branch, forms the Boundary Category Correction Framework (BCCF). It corrects the boundary category of the meta-learning branch prediction mask by predicting the region of the base categories in the query set. Experiments are conducted on the mainstream ABD-MR and ABD-CT medical image segmentation public datasets. Comparative analysis and ablation experiments are performed with a variety of existing state-of-the-art few-shot segmentation methods. The results demonstrate that the effectiveness of the proposed method with significant enhance the segmentation performance on medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菜白完成签到 ,获得积分10
刚刚
杳鸢应助老迟到的乐安采纳,获得10
2秒前
小树完成签到,获得积分20
3秒前
4秒前
Orange应助尊敬艳采纳,获得30
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
SweepingMonk应助科研通管家采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
so000应助科研通管家采纳,获得10
6秒前
亮点发布了新的文献求助10
6秒前
不晚应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
so000应助科研通管家采纳,获得10
6秒前
华仔应助一方通行采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
so000应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
echoooo应助xjx采纳,获得10
9秒前
9秒前
10秒前
Cindy165发布了新的文献求助10
10秒前
clnear完成签到,获得积分10
10秒前
ice发布了新的文献求助10
10秒前
领导范儿应助无心的土豆采纳,获得10
11秒前
12秒前
12秒前
pluto应助Janee7采纳,获得10
13秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461924
求助须知:如何正确求助?哪些是违规求助? 3055592
关于积分的说明 9048604
捐赠科研通 2745261
什么是DOI,文献DOI怎么找? 1506125
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695539