Classifier-guided Multi-style Tile Image Generation Method

瓦片 人工智能 计算机科学 图像拼接 计算机视觉 分类器(UML) 纹理合成 图像纹理 图像(数学) 模式识别(心理学) 图像分割 艺术 视觉艺术
作者
Jianfeng Lu,Mengtao Shi,Changcheng Song,Wangbo Zhao,Lifeng Xi,Mahmoud Emam
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (1): 101899-101899
标识
DOI:10.1016/j.jksuci.2023.101899
摘要

Image generative models for ceramic tile design lack style diversity and controllability of high-quality generated styles. It is difficult to find a series of ceramic tiles with the same texture but distinct styles, that makes it a challenging for users to select from a limited number of tiles with a single style. Although, Generative Adversarial Networks (GANs) can slightly increase the style diversity of tile images, the style controllability remains very weak. Additionally, concatenating generated tile image blocks to obtain a larger texture region can easily result in seams at the boundaries that decrease image quality. In this paper, we propose a style transfer method for ceramic tiles texture generation that combines a classifier-guided StyleGAN with AdaIN-GAN to overcome the above limitations. Firstly, we introduce a new conditional classifier-guided module into the StyleGAN. With the guidance of the input condition vector, the output image is made to have the tile style characteristics that match the vector. At the same time, the fusion of the condition vectors realizes the style gradient effect of the tile image to expand the style diversity. Secondly, we use the AdaIN-GAN to color the original texture in tile style. The style images generated by StyleGAN are then used as a dataset for model training to enhance the generalization ability of the model and achieve a style transfer effect with fixed texture features but significantly diverse styles. Finally, a linear weighted image stitching method is adopted, which uses an adaptive kernel linear weighted matrix to cover and splice arbitrary seams with image blocks, thereby successfully eliminating seams and enhancing image continuity. When this method is applied to high-resolution tile image generation, the method still maintains higher continuity and clearer image quality. Extensive experiments and human evaluation confirm the superior performance of the proposed method compared with other SOTA methods. The experimental results also verify that the new tile images generated by the proposed algorithm have diverse styles and meet the design requirements for tile style diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助李静采纳,获得10
1秒前
2秒前
科研通AI6应助许鑫蓁采纳,获得10
2秒前
2秒前
leona发布了新的文献求助10
3秒前
Lyuhng+1完成签到 ,获得积分10
3秒前
hongliyu98发布了新的文献求助10
3秒前
3秒前
4秒前
霜之哀伤完成签到,获得积分10
5秒前
5秒前
1206完成签到,获得积分20
5秒前
孙一一完成签到 ,获得积分10
6秒前
科研通AI6应助豆豆采纳,获得10
6秒前
6秒前
噜噜噜发布了新的文献求助10
6秒前
小马发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
谨慎初曼发布了新的文献求助10
8秒前
jndx2010发布了新的文献求助10
8秒前
8秒前
冷傲海完成签到,获得积分10
9秒前
文静新烟发布了新的文献求助10
10秒前
深情安青应助v321采纳,获得10
10秒前
ly发布了新的文献求助10
10秒前
10秒前
bwod发布了新的文献求助10
11秒前
Lsmile发布了新的文献求助10
11秒前
赘婿应助peng采纳,获得10
11秒前
FaiRe发布了新的文献求助10
11秒前
11秒前
徐枘完成签到,获得积分10
12秒前
LD发布了新的文献求助10
12秒前
12秒前
SciGPT应助下次见采纳,获得10
12秒前
Gzh_NJ完成签到,获得积分10
12秒前
ll完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322