Vision-based Monitoring of the Short-term Dynamic Behaviour of Plants for Automated Phenotyping

计算机科学 反演(地质) 航程(航空) 期限(时间) 生物系统 人工智能 算法 工程类 生物 古生物学 物理 构造盆地 量子力学 航空航天工程
作者
Nikolaus Wagner,Grzegorz Cielniak
标识
DOI:10.1109/iccvw60793.2023.00069
摘要

Modern computer vision technology plays an increasingly important role in agriculture. Automated monitoring of plants for example is an essential task in several applications, such as high-throughput phenotyping or plant health monitoring. Under external influences like wind, plants typically exhibit dynamic behaviours which reveal important characteristics of their structure and condition. These behaviours, however, are typically not considered by state-of-the-art automated phenotyping methods which mostly observe static plant properties. In this paper, we propose an automated system for monitoring oscillatory plant movement from video sequences. We employ harmonic inversion for the purpose of efficiently and accurately estimating the eigenfrequency and damping parameters of individual plant parts. The achieved accuracy is compared against values obtained by performing the Discrete Fourier Transform (DFT), which we use as a baseline. We demonstrate the applicability of this approach on different plants and plant parts, like wheat ears, hanging vines, as well as stems and stalks, which exhibit a range of oscillatory motions. By utilising harmonic inversion, we are able to consistently obtain more accurate values for the eigenfrequencies compared to those obtained by DFT. We are furthermore able to directly estimate values for the damping coefficient, achieving a similar accuracy as via DFT-based methods, but without the additional computational effort required for the latter. With the approach presented in this paper, it is possible to obtain estimates of mechanical plant characteristics in an automated manner, enabling novel automated acquisition of novel traits for phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方的笑萍完成签到 ,获得积分10
刚刚
Felicity完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
yahoo0411完成签到 ,获得积分10
1秒前
sherry发布了新的文献求助10
1秒前
天天发布了新的文献求助10
1秒前
1秒前
1秒前
lixuerui完成签到,获得积分10
2秒前
2秒前
2秒前
Grayball应助xueshu小裁缝采纳,获得10
3秒前
小兔叽完成签到,获得积分10
3秒前
马美丽完成签到 ,获得积分10
3秒前
周钰波完成签到,获得积分20
4秒前
灵兰发布了新的文献求助10
4秒前
深夜不提科研完成签到 ,获得积分10
5秒前
颗粒完成签到,获得积分10
5秒前
Anastasia完成签到 ,获得积分10
5秒前
jinqihui完成签到 ,获得积分10
6秒前
充电宝应助sherry采纳,获得10
6秒前
梅子黄时雨完成签到 ,获得积分10
6秒前
圆粉条完成签到 ,获得积分10
6秒前
迅速星星完成签到 ,获得积分10
6秒前
今后应助研友_VZG64n采纳,获得10
7秒前
coldbee完成签到 ,获得积分10
7秒前
学者发布了新的文献求助10
8秒前
lou完成签到 ,获得积分10
8秒前
gyx完成签到 ,获得积分10
8秒前
ru完成签到 ,获得积分10
8秒前
t通发布了新的文献求助10
8秒前
9秒前
9秒前
鹿玮完成签到 ,获得积分10
9秒前
hktbk完成签到 ,获得积分10
10秒前
张wen关注了科研通微信公众号
10秒前
cheng完成签到 ,获得积分10
10秒前
22完成签到,获得积分10
10秒前
Wangyn完成签到,获得积分10
11秒前
zengyan完成签到 ,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662278
求助须知:如何正确求助?哪些是违规求助? 3223084
关于积分的说明 9750065
捐赠科研通 2932888
什么是DOI,文献DOI怎么找? 1605851
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727