扫描电镜
光漂白
显微镜
超分辨率
相关
亚历山福禄
光学
物理
荧光
受激发射
计算机科学
人工智能
激光器
语言学
图像(数学)
哲学
摘要
Correlative super-resolution microscopy has the potential to accurately visualize and validate new biological structures past the diffraction limit. However, combining different super-resolution modalities, such as deterministic stimulated emission depletion (STED) and stochastic single-molecule localization microscopy (SMLM), is a challenging endeavour. For correlative STED and SMLM, the following poses a significant challenge: (1) the photobleaching of the fluorophores in STED; (2) the subsequent reactivation of the fluorophores for SMLM and (3) finding the right fluorochrome and imaging buffer for both imaging modalities. Here, we highlight how the deep ultraviolet (DBUE) wavelengths of the Mercury (Hg) arc lamp can help recover STED bleaching and allow for the reactivation of single molecules for SMLM imaging. We also show that Alexa Fluor 594 and the commercially available Prolong Diamond to be excellent fluorophores and imaging media for correlative STED and SMLM.
科研通智能强力驱动
Strongly Powered by AbleSci AI