Optimal tracking control of batch processes with time-invariant state delay: Adaptive Q-learning with two-dimensional state and control policy

计算机科学 国家(计算机科学) 增强学习 不变(物理) 控制(管理) 跟踪(教育) 控制理论(社会学) LTI系统理论 人工智能 强化学习 算法 数学 线性系统 数学物理 数学分析 教育学 心理学
作者
Huiyuan Shi,Mengdi Lv,Xueying Jiang,Chengli Su,Ping Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 108006-108006 被引量:4
标识
DOI:10.1016/j.engappai.2024.108006
摘要

Given that conventional model-based control methods have some limitations for dynamic systems with unknown model parameters and existing reinforcement learning methods do not take batch and time delay information into account, a novel data-based adaptive Q-learning approach with two-dimensional (2D) state and control policy is proposed to address the optimal tracking control issue for batch processes with time-invariant state delay. The extended delay state space equation, value function, Q function and optimal performance index are initially presented along the time and batch directions. By examining the correlation between the 2D value function and the 2D Q function, a delay-dependent 2D Bellman equation is designed independent of the process model, which is solved to obtain the expression of the control law. Without requiring prior knowledge of the system, the optimal gain matrices of the control law are further learned by using the current and historical state, output error values and time delay information of the timewise and batchwise. It is feasible to achieve accelerated convergence and reduced errors between the optimal control gain matrices and the learning gain matrices, hence enhancing the tracking capabilities of the systems. At the same time, the unbiasedness and convergence of the given adaptive Q-learning approach are strictly proved. The effectiveness of the proposed algorithm is ultimately validated by simulation comparisons of injection molding, specifically regarding the convergence of control gains and the tracking of output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
人间烟火完成签到,获得积分10
1秒前
Orange应助饱满芷卉采纳,获得10
1秒前
小耿完成签到 ,获得积分20
1秒前
呼延初瑶完成签到 ,获得积分10
1秒前
求知小生发布了新的文献求助10
1秒前
2秒前
好久不见发布了新的文献求助10
2秒前
2秒前
opticalff完成签到,获得积分10
3秒前
3秒前
曲雪一发布了新的文献求助10
3秒前
猫和老鼠完成签到,获得积分10
3秒前
lla完成签到,获得积分10
3秒前
zj完成签到,获得积分10
4秒前
4秒前
今后应助ST采纳,获得10
4秒前
九九发布了新的文献求助10
4秒前
5秒前
Lucas应助木木采纳,获得10
5秒前
HongMou完成签到,获得积分10
5秒前
5秒前
6秒前
风中雨筠发布了新的文献求助10
6秒前
liushuang发布了新的文献求助10
6秒前
7秒前
时暮辰发布了新的文献求助10
7秒前
Ray完成签到,获得积分10
7秒前
Agnes发布了新的文献求助10
8秒前
科研民工发布了新的文献求助10
8秒前
kb完成签到,获得积分10
8秒前
北冥有鱼发布了新的文献求助10
8秒前
英俊的铭应助crabbbb68采纳,获得10
8秒前
慕青应助徐露珠采纳,获得10
9秒前
IIIris完成签到,获得积分10
9秒前
opticalff发布了新的文献求助10
9秒前
Stella应助好久不见采纳,获得10
9秒前
Owen应助好久不见采纳,获得10
9秒前
科研通AI6应助好久不见采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588071
求助须知:如何正确求助?哪些是违规求助? 4671128
关于积分的说明 14785936
捐赠科研通 4624341
什么是DOI,文献DOI怎么找? 2531566
邀请新用户注册赠送积分活动 1500214
关于科研通互助平台的介绍 1468207