Optimal tracking control of batch processes with time-invariant state delay: Adaptive Q-learning with two-dimensional state and control policy

计算机科学 国家(计算机科学) 增强学习 不变(物理) 控制(管理) 跟踪(教育) 控制理论(社会学) LTI系统理论 人工智能 强化学习 算法 数学 线性系统 数学物理 数学分析 教育学 心理学
作者
Huiyuan Shi,Mengdi Lv,Xueying Jiang,Chengli Su,Ping Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 108006-108006 被引量:4
标识
DOI:10.1016/j.engappai.2024.108006
摘要

Given that conventional model-based control methods have some limitations for dynamic systems with unknown model parameters and existing reinforcement learning methods do not take batch and time delay information into account, a novel data-based adaptive Q-learning approach with two-dimensional (2D) state and control policy is proposed to address the optimal tracking control issue for batch processes with time-invariant state delay. The extended delay state space equation, value function, Q function and optimal performance index are initially presented along the time and batch directions. By examining the correlation between the 2D value function and the 2D Q function, a delay-dependent 2D Bellman equation is designed independent of the process model, which is solved to obtain the expression of the control law. Without requiring prior knowledge of the system, the optimal gain matrices of the control law are further learned by using the current and historical state, output error values and time delay information of the timewise and batchwise. It is feasible to achieve accelerated convergence and reduced errors between the optimal control gain matrices and the learning gain matrices, hence enhancing the tracking capabilities of the systems. At the same time, the unbiasedness and convergence of the given adaptive Q-learning approach are strictly proved. The effectiveness of the proposed algorithm is ultimately validated by simulation comparisons of injection molding, specifically regarding the convergence of control gains and the tracking of output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sachio发布了新的文献求助10
刚刚
刚刚
烟花应助外向的翠风采纳,获得10
刚刚
大模型应助做好自己采纳,获得10
1秒前
JamesPei应助fwx1997采纳,获得30
1秒前
英俊的铭应助达乐采纳,获得10
1秒前
lz发布了新的文献求助10
1秒前
1秒前
佳期如梦发布了新的文献求助10
1秒前
y先生发布了新的文献求助10
1秒前
1秒前
3秒前
刻苦海露发布了新的文献求助10
3秒前
4秒前
5秒前
洁净山灵发布了新的文献求助10
5秒前
高挑的哈密瓜完成签到,获得积分10
6秒前
7秒前
云遮月完成签到,获得积分10
7秒前
7秒前
Rr完成签到,获得积分10
7秒前
8R60d8应助感动帅哥采纳,获得10
7秒前
小可发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助lz采纳,获得10
8秒前
8秒前
z7777777发布了新的文献求助10
10秒前
彭云发布了新的文献求助10
10秒前
10秒前
11秒前
快乐的小黄鱼完成签到,获得积分10
11秒前
求学完成签到,获得积分10
12秒前
12秒前
聪明勇敢有力量完成签到,获得积分10
12秒前
调皮又蓝发布了新的文献求助10
13秒前
13秒前
13秒前
上好佳完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589390
求助须知:如何正确求助?哪些是违规求助? 4004521
关于积分的说明 12398344
捐赠科研通 3681518
什么是DOI,文献DOI怎么找? 2029130
邀请新用户注册赠送积分活动 1062632
科研通“疑难数据库(出版商)”最低求助积分说明 948329