Optimal tracking control of batch processes with time-invariant state delay: Adaptive Q-learning with two-dimensional state and control policy

计算机科学 国家(计算机科学) 增强学习 不变(物理) 控制(管理) 跟踪(教育) 控制理论(社会学) LTI系统理论 人工智能 强化学习 算法 数学 线性系统 心理学 数学分析 教育学 数学物理
作者
Huiyuan Shi,Mengdi Lv,Xueying Jiang,Chengli Su,Ping Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 108006-108006 被引量:4
标识
DOI:10.1016/j.engappai.2024.108006
摘要

Given that conventional model-based control methods have some limitations for dynamic systems with unknown model parameters and existing reinforcement learning methods do not take batch and time delay information into account, a novel data-based adaptive Q-learning approach with two-dimensional (2D) state and control policy is proposed to address the optimal tracking control issue for batch processes with time-invariant state delay. The extended delay state space equation, value function, Q function and optimal performance index are initially presented along the time and batch directions. By examining the correlation between the 2D value function and the 2D Q function, a delay-dependent 2D Bellman equation is designed independent of the process model, which is solved to obtain the expression of the control law. Without requiring prior knowledge of the system, the optimal gain matrices of the control law are further learned by using the current and historical state, output error values and time delay information of the timewise and batchwise. It is feasible to achieve accelerated convergence and reduced errors between the optimal control gain matrices and the learning gain matrices, hence enhancing the tracking capabilities of the systems. At the same time, the unbiasedness and convergence of the given adaptive Q-learning approach are strictly proved. The effectiveness of the proposed algorithm is ultimately validated by simulation comparisons of injection molding, specifically regarding the convergence of control gains and the tracking of output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的晓旋完成签到,获得积分10
刚刚
AHR发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
1秒前
1秒前
3080完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
Lucas发布了新的文献求助20
3秒前
Do发布了新的文献求助10
4秒前
传奇3应助wananan采纳,获得10
5秒前
6秒前
可问春风完成签到,获得积分10
6秒前
6秒前
impala完成签到,获得积分10
6秒前
7秒前
Mississippiecho完成签到,获得积分10
7秒前
卜乌完成签到,获得积分10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
不懈奋进应助科研通管家采纳,获得30
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
希望天下0贩的0应助毛毛采纳,获得10
8秒前
蜘猪侠zx应助科研通管家采纳,获得10
8秒前
pluto应助毛毛采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
March应助毛毛采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
李健的粉丝团团长应助HHHH采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
maomao完成签到,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060