Spectral encoder to extract the efficient features of Raman spectra for reliable and precise quantitative analysis

拉曼光谱 计算机科学 光谱分析 模式识别(心理学) 人工智能 谱线 编码器 分析化学(期刊) 色谱法 光谱学 统计 光学 化学 量子力学 数学 物理
作者
Chi Gao,Qi Fan,Peng Zhao,Chao Sun,Ruochen Dang,Yutao Feng,Bingliang Hu,Quan Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:312: 124036-124036 被引量:1
标识
DOI:10.1016/j.saa.2024.124036
摘要

Raman spectroscopy has become a powerful analytical tool highly demanded in many applications such as microorganism sample analysis, food quality control, environmental science, and pharmaceutical analysis, owing to its non-invasiveness, simplicity, rapidity and ease of use. Among them, quantitative research using Raman spectroscopy is a crucial application field of spectral analysis. However, the entire process of quantitative modeling largely relies on the extraction of effective spectral features, particularly for measurements on complex samples or in environments with poor spectral signal quality. In this paper, we propose a method of utilizing a spectral encoder to extract effective spectral features, which can significantly enhance the reliability and precision of quantitative analysis. We built a latent encoded feature regression model; in the process of utilizing the autoencoder for reconstructing the spectrometer output, the latent feature obtained from the intermediate bottleneck layer is extracted. Then, these latent features are fed into a deep regression model for component concentration prediction. Through detailed ablation and comparative experiments, our proposed model demonstrates superior performance to common methods on single-component and multi-component mixture datasets, remarkably improving regression precision while without needing user-selected parameters and eliminating the interference of irrelevant and redundant information. Furthermore, in-depth analysis reveals that latent encoded feature possesses strong nonlinear feature representation capabilities, low computational costs, wide adaptability, and robustness against noise interference. This highlights its effectiveness in spectral regression tasks and indicates its potential in other application fields. Sufficient experimental results show that our proposed method provides a novel and effective feature extraction approach for spectral analysis, which is simple, suitable for various methods, and can meet the measurement needs of different real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
3秒前
彭于晏应助ejiiame采纳,获得30
3秒前
4秒前
5秒前
hh发布了新的文献求助10
6秒前
6秒前
Miracle发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI2S应助yu采纳,获得10
8秒前
yoyo233发布了新的文献求助10
8秒前
12秒前
斯文败类应助狞猰采纳,获得30
12秒前
13秒前
保住头发为科研完成签到,获得积分10
13秒前
沉默高跟鞋完成签到,获得积分10
14秒前
瑾瑜匿瑕发布了新的文献求助10
15秒前
杳鸢应助奋斗的雅柔采纳,获得30
15秒前
Lucas应助Miracle采纳,获得10
16秒前
此间少年完成签到,获得积分10
16秒前
18秒前
豆沙包子发布了新的文献求助10
18秒前
18秒前
20秒前
hebhm发布了新的文献求助10
20秒前
满意的芸完成签到 ,获得积分10
20秒前
青岛港最帅的人完成签到,获得积分10
21秒前
xixi应助coffee采纳,获得10
21秒前
wyh发布了新的文献求助10
21秒前
21秒前
小包子完成签到,获得积分10
21秒前
此间少年发布了新的文献求助10
22秒前
22秒前
小景诺完成签到,获得积分10
23秒前
羊Q完成签到,获得积分10
24秒前
StuXuhao发布了新的文献求助10
24秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387666
求助须知:如何正确求助?哪些是违规求助? 3000256
关于积分的说明 8790493
捐赠科研通 2686215
什么是DOI,文献DOI怎么找? 1471580
科研通“疑难数据库(出版商)”最低求助积分说明 680386
邀请新用户注册赠送积分活动 673117