Reducing Industrial Water Consumption: The Impact of Organizational Learning

标杆管理 工厂(面向对象编程) 消费(社会学) 生产(经济) 业务 跨国公司 环境经济学 缺水 用水 营销 运营管理 计算机科学 经济 水资源 微观经济学 生物 财务 社会学 社会科学 程序设计语言 生态学
作者
Amrou Awaysheh,Sriram Narayanan,Brian W. Jacobs
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (1): 225-242
标识
DOI:10.1177/10591478231224929
摘要

Using factory-level data from a large multinational manufacturer, we examine the effects of both organizational experience and knowledge transfer on an increasingly critical environmental performance measure, the consumption of water required for manufacturing. We estimate the direct effects on water consumption from in-factory cumulative production experience and the vicarious learning from peer factories in the same product category. We consider vicarious learning from three potential sources: observation of peer factories’ cumulative production experience; and benchmarking of water consumption performance with the best and worst performing peer factories. For each learning channel, we test for the moderating effects of water scarcity and geographic proximity. We find that factories learn to reduce their water consumption from their own experience but at a greater rate in water-scarce locations. Although we find that factories learn significantly from observing the cumulative production experience of peer factories, this effect does not hold in water-scarce locations or across geographic regions. We document that learning effects from observing others’ experience are quite distinct from learning effects by benchmarking others’ performance. We find vicarious learning effects from benchmarking the best-performing peer factories result in significant reductions in water consumption, and this effect is greater when the factory is in a water-scarce location, and when benchmarking other regions rather than within the same region. Finally, we find less significant vicarious learning from observing the worst-performing factories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MJJJ发布了新的文献求助10
刚刚
李爱国应助发的不太好采纳,获得10
2秒前
不倦发布了新的文献求助10
2秒前
九城完成签到,获得积分10
3秒前
舒心乐蓉完成签到,获得积分10
3秒前
3秒前
ss发布了新的文献求助10
3秒前
4秒前
李健应助journey采纳,获得10
4秒前
jx发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
天亮了发布了新的文献求助10
6秒前
6秒前
XH发布了新的文献求助10
6秒前
6秒前
科研通AI6应助猪猪hero采纳,获得10
6秒前
7秒前
龙傲天发布了新的文献求助10
8秒前
8秒前
9秒前
SC关闭了SC文献求助
9秒前
蛋挞完成签到,获得积分10
10秒前
任性雨柏发布了新的文献求助10
10秒前
10秒前
爱数羊的一只狗完成签到,获得积分10
10秒前
哎嘿发布了新的文献求助10
11秒前
12秒前
一一应助Atopos文采纳,获得10
12秒前
路远程发布了新的文献求助10
12秒前
12秒前
12秒前
Maria完成签到,获得积分20
13秒前
Lhk柒发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610496
求助须知:如何正确求助?哪些是违规求助? 4695036
关于积分的说明 14885353
捐赠科研通 4722673
什么是DOI,文献DOI怎么找? 2545199
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473079