已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reducing Industrial Water Consumption: The Impact of Organizational Learning

标杆管理 工厂(面向对象编程) 消费(社会学) 生产(经济) 业务 跨国公司 环境经济学 缺水 用水 营销 运营管理 计算机科学 经济 水资源 微观经济学 生物 财务 社会学 社会科学 程序设计语言 生态学
作者
Amrou Awaysheh,Sriram Narayanan,Brian W. Jacobs
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (1): 225-242
标识
DOI:10.1177/10591478231224929
摘要

Using factory-level data from a large multinational manufacturer, we examine the effects of both organizational experience and knowledge transfer on an increasingly critical environmental performance measure, the consumption of water required for manufacturing. We estimate the direct effects on water consumption from in-factory cumulative production experience and the vicarious learning from peer factories in the same product category. We consider vicarious learning from three potential sources: observation of peer factories’ cumulative production experience; and benchmarking of water consumption performance with the best and worst performing peer factories. For each learning channel, we test for the moderating effects of water scarcity and geographic proximity. We find that factories learn to reduce their water consumption from their own experience but at a greater rate in water-scarce locations. Although we find that factories learn significantly from observing the cumulative production experience of peer factories, this effect does not hold in water-scarce locations or across geographic regions. We document that learning effects from observing others’ experience are quite distinct from learning effects by benchmarking others’ performance. We find vicarious learning effects from benchmarking the best-performing peer factories result in significant reductions in water consumption, and this effect is greater when the factory is in a water-scarce location, and when benchmarking other regions rather than within the same region. Finally, we find less significant vicarious learning from observing the worst-performing factories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张泽林完成签到 ,获得积分10
2秒前
linglingling完成签到 ,获得积分10
3秒前
一枚小豆完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
Mr.H完成签到 ,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
Kevin发布了新的文献求助10
4秒前
陆碌路完成签到,获得积分10
5秒前
滴滴滴发布了新的文献求助50
5秒前
Lsl发布了新的文献求助10
5秒前
5秒前
6秒前
文静的惜雪完成签到 ,获得积分10
6秒前
刘佳慧发布了新的文献求助10
6秒前
天空完成签到 ,获得积分10
7秒前
WangJL完成签到 ,获得积分10
7秒前
852应助简单寻冬采纳,获得10
7秒前
Ania99完成签到 ,获得积分10
9秒前
1111发布了新的文献求助10
9秒前
且歌且行完成签到,获得积分10
9秒前
名卡卡发布了新的文献求助10
9秒前
多情的忆之完成签到,获得积分10
9秒前
超级小卢发布了新的文献求助10
10秒前
10秒前
klio完成签到 ,获得积分10
10秒前
Bowman完成签到,获得积分10
12秒前
luming完成签到 ,获得积分10
13秒前
三个气的大门完成签到 ,获得积分10
13秒前
ruogu7完成签到,获得积分10
14秒前
上官若男应助一勺晚安z采纳,获得10
14秒前
changping应助多情的忆之采纳,获得10
14秒前
14秒前
15秒前
领导范儿应助Eric采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301191
求助须知:如何正确求助?哪些是违规求助? 4448856
关于积分的说明 13847395
捐赠科研通 4334823
什么是DOI,文献DOI怎么找? 2379876
邀请新用户注册赠送积分活动 1374944
关于科研通互助平台的介绍 1340763