亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reducing Industrial Water Consumption: The Impact of Organizational Learning

标杆管理 工厂(面向对象编程) 消费(社会学) 生产(经济) 业务 跨国公司 环境经济学 缺水 用水 营销 运营管理 计算机科学 经济 水资源 微观经济学 生物 财务 社会学 社会科学 程序设计语言 生态学
作者
Amrou Awaysheh,Sriram Narayanan,Brian W. Jacobs
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (1): 225-242
标识
DOI:10.1177/10591478231224929
摘要

Using factory-level data from a large multinational manufacturer, we examine the effects of both organizational experience and knowledge transfer on an increasingly critical environmental performance measure, the consumption of water required for manufacturing. We estimate the direct effects on water consumption from in-factory cumulative production experience and the vicarious learning from peer factories in the same product category. We consider vicarious learning from three potential sources: observation of peer factories’ cumulative production experience; and benchmarking of water consumption performance with the best and worst performing peer factories. For each learning channel, we test for the moderating effects of water scarcity and geographic proximity. We find that factories learn to reduce their water consumption from their own experience but at a greater rate in water-scarce locations. Although we find that factories learn significantly from observing the cumulative production experience of peer factories, this effect does not hold in water-scarce locations or across geographic regions. We document that learning effects from observing others’ experience are quite distinct from learning effects by benchmarking others’ performance. We find vicarious learning effects from benchmarking the best-performing peer factories result in significant reductions in water consumption, and this effect is greater when the factory is in a water-scarce location, and when benchmarking other regions rather than within the same region. Finally, we find less significant vicarious learning from observing the worst-performing factories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
11秒前
24秒前
zbzfp发布了新的文献求助10
28秒前
37秒前
38秒前
39秒前
香蕉觅云应助zbzfp采纳,获得10
39秒前
王加冕完成签到 ,获得积分10
51秒前
时尚丹寒完成签到 ,获得积分10
1分钟前
烂漫的芫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
迷途小书童完成签到,获得积分10
1分钟前
1分钟前
科目三应助Jello采纳,获得10
2分钟前
131949发布了新的文献求助10
2分钟前
脑洞疼应助131949采纳,获得10
2分钟前
lele完成签到 ,获得积分10
2分钟前
2分钟前
huayu发布了新的文献求助10
2分钟前
2分钟前
知性的剑身完成签到,获得积分10
2分钟前
2分钟前
2分钟前
学生信的大叔完成签到,获得积分10
2分钟前
云轰2857发布了新的文献求助10
2分钟前
进步面包笑哈哈应助huayu采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
哭泣朝雪发布了新的文献求助10
2分钟前
2分钟前
上官若男应助云轰2857采纳,获得10
2分钟前
吴子鹏发布了新的文献求助10
2分钟前
yeeming应助Chocolat_Chaud采纳,获得10
2分钟前
云轰2857完成签到,获得积分10
2分钟前
G13完成签到,获得积分20
3分钟前
田様应助吴子鹏采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509482
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489686
捐赠科研通 4539145
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469770
关于科研通互助平台的介绍 1442014