DeepGraFT: A novel semantic segmentation auxiliary ROI-based deep learning framework for effective fundus tessellation classification

人工智能 计算机科学 分割 机器学习 深度学习 队列 分级(工程) 眼底(子宫) 接收机工作特性 模式识别(心理学) 医学 放射科 病理 工程类 土木工程
作者
Yinghao Yao,Jiaying Yang,Haojun Sun,Hengte Kong,Sheng Wang,Ke Xu,Wei Dai,Siyi Jiang,QingShi Bai,Shilai Xing,Jian Yuan,Xinting Liu,Fan Lü,Zhenhui Chen,Jia Qu,Jianzhong Su
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107881-107881 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107881
摘要

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jian94完成签到,获得积分10
2秒前
bobecust完成签到,获得积分10
2秒前
小李完成签到,获得积分10
3秒前
土豆子汁完成签到,获得积分10
3秒前
汶溢发布了新的文献求助10
3秒前
Awar完成签到,获得积分10
4秒前
ZBM完成签到,获得积分10
4秒前
小七完成签到 ,获得积分10
4秒前
铁柱xh完成签到 ,获得积分10
4秒前
洁净的寒安完成签到,获得积分10
5秒前
和谐的醉山完成签到,获得积分10
6秒前
林林完成签到,获得积分10
6秒前
南国完成签到,获得积分10
6秒前
缓慢海蓝完成签到 ,获得积分10
6秒前
无限的寄真完成签到 ,获得积分10
8秒前
汶溢完成签到,获得积分10
9秒前
τ涛完成签到,获得积分10
10秒前
11秒前
失眠夏山完成签到,获得积分10
11秒前
JS完成签到,获得积分10
12秒前
麦田的守望者完成签到,获得积分10
13秒前
乖乖完成签到,获得积分10
13秒前
14秒前
美美完成签到 ,获得积分10
15秒前
雯子完成签到,获得积分10
15秒前
君莫笑完成签到,获得积分10
16秒前
昭昭完成签到,获得积分10
17秒前
20秒前
zhw完成签到 ,获得积分10
20秒前
君莫笑发布了新的文献求助10
20秒前
苦哈哈完成签到,获得积分10
20秒前
研友_8yPrqZ完成签到,获得积分10
21秒前
小熊猫完成签到,获得积分10
23秒前
xiaohaitao发布了新的文献求助10
23秒前
无语的茗茗完成签到,获得积分10
23秒前
puzhongjiMiQ完成签到,获得积分10
25秒前
无花果应助哥谭小怪兽采纳,获得10
25秒前
李大宝完成签到 ,获得积分10
26秒前
puzhongjiMiQ发布了新的文献求助10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261743
求助须知:如何正确求助?哪些是违规求助? 2902575
关于积分的说明 8320003
捐赠科研通 2572346
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632308