DeepGraFT: A novel semantic segmentation auxiliary ROI-based deep learning framework for effective fundus tessellation classification

人工智能 计算机科学 分割 机器学习 深度学习 队列 分级(工程) 眼底(子宫) 接收机工作特性 模式识别(心理学) 医学 放射科 病理 工程类 土木工程
作者
Yinghao Yao,Jiaying Yang,Haojun Sun,Hengte Kong,Sheng Wang,Ke Xu,Wei Dai,Siyi Jiang,QingShi Bai,Shilai Xing,Jian Yuan,Xinting Liu,Fan Lü,Zhenhui Chen,Jia Qu,Jianzhong Su
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107881-107881 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107881
摘要

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详晓亦发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
雪轩完成签到,获得积分10
2秒前
zmddm关注了科研通微信公众号
2秒前
研友_VZG7GZ应助南国采纳,获得30
2秒前
我请问呢发布了新的文献求助10
2秒前
3秒前
pia叽关注了科研通微信公众号
3秒前
4秒前
4秒前
虚拟的姒发布了新的文献求助10
5秒前
5秒前
喝杯茶发布了新的文献求助10
5秒前
思源应助好运6连采纳,获得10
5秒前
6秒前
6秒前
6秒前
zfl完成签到,获得积分10
7秒前
elif发布了新的文献求助10
8秒前
8秒前
9秒前
风中的嚣发布了新的文献求助10
9秒前
Maestro_S应助紧张的惜梦采纳,获得20
9秒前
ray完成签到,获得积分20
10秒前
zh发布了新的文献求助10
10秒前
wlg发布了新的文献求助10
10秒前
11秒前
火火发布了新的文献求助10
11秒前
笨笨乘风发布了新的文献求助10
12秒前
12秒前
12秒前
思源应助幸福广山采纳,获得10
13秒前
cecilycen完成签到,获得积分10
14秒前
15秒前
ZNan发布了新的文献求助10
15秒前
科研通AI2S应助wlg采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
田様应助小giao吃不饱采纳,获得10
16秒前
木木发布了新的文献求助10
16秒前
lt发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536