DeepGraFT: A novel semantic segmentation auxiliary ROI-based deep learning framework for effective fundus tessellation classification

人工智能 计算机科学 分割 机器学习 深度学习 队列 分级(工程) 眼底(子宫) 接收机工作特性 模式识别(心理学) 医学 放射科 病理 土木工程 工程类
作者
Yinghao Yao,Jiaying Yang,Haojun Sun,Hengte Kong,Sheng Wang,Ke Xu,Wei Dai,Siyi Jiang,QingShi Bai,Shilai Xing,Jian Yuan,Xinting Liu,Fan Lü,Zhenhui Chen,Jia Qu,Jianzhong Su
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107881-107881 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107881
摘要

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11完成签到,获得积分10
刚刚
1秒前
wan完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
小胡完成签到,获得积分10
2秒前
2秒前
FZz发布了新的文献求助10
2秒前
瑶桑发布了新的文献求助10
2秒前
3秒前
Jasper应助第七个星球采纳,获得10
3秒前
3秒前
Akim应助奔跑的棉花采纳,获得10
4秒前
4秒前
peaches完成签到,获得积分20
4秒前
传奇3应助团结友爱采纳,获得10
4秒前
4秒前
活力的妙之完成签到 ,获得积分10
4秒前
Sun了个晒完成签到,获得积分10
5秒前
雨雨完成签到,获得积分10
5秒前
我就是唐僧同事完成签到,获得积分10
5秒前
5秒前
英吉利25发布了新的文献求助10
5秒前
田様应助Dylan采纳,获得10
5秒前
商洪涛发布了新的文献求助10
5秒前
6秒前
赵一发布了新的文献求助10
6秒前
保护萝卜发布了新的文献求助10
7秒前
7秒前
花朝十一发布了新的文献求助10
7秒前
典雅代云发布了新的文献求助10
7秒前
7秒前
7秒前
秋子骞发布了新的文献求助10
8秒前
Huang_being完成签到,获得积分10
8秒前
9秒前
liu发布了新的文献求助10
9秒前
李某完成签到,获得积分10
10秒前
11秒前
古月发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894