DeepGraFT: A novel semantic segmentation auxiliary ROI-based deep learning framework for effective fundus tessellation classification

人工智能 计算机科学 分割 机器学习 深度学习 队列 分级(工程) 眼底(子宫) 接收机工作特性 模式识别(心理学) 医学 放射科 病理 土木工程 工程类
作者
Yinghao Yao,Jiaying Yang,Haojun Sun,Hengte Kong,Sheng Wang,Ke Xu,Wei Dai,Siyi Jiang,QingShi Bai,Shilai Xing,Jian Yuan,Xinting Liu,Fan Lü,Zhenhui Chen,Jia Qu,Jianzhong Su
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107881-107881 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107881
摘要

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
刘奕欣发布了新的文献求助10
1秒前
1秒前
2秒前
顾勇完成签到,获得积分0
2秒前
Orange应助cistronic采纳,获得10
5秒前
小张同学发布了新的文献求助10
5秒前
67n发布了新的文献求助10
5秒前
情怀应助高大的帆布鞋采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
江新儿发布了新的文献求助20
7秒前
大饼完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
CJJ完成签到,获得积分10
9秒前
9秒前
xsxakn完成签到,获得积分10
9秒前
安妮关注了科研通微信公众号
10秒前
元谷雪发布了新的文献求助10
10秒前
haohao完成签到,获得积分20
12秒前
bkagyin应助丹牛采纳,获得30
12秒前
Jun完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
科研通AI6.1应助txs采纳,获得10
15秒前
科研通AI2S应助xixi1采纳,获得10
15秒前
bkagyin应助Nowind采纳,获得10
17秒前
18秒前
一吃一大碗完成签到,获得积分10
18秒前
布丁发布了新的文献求助10
19秒前
姚老表发布了新的文献求助50
20秒前
20秒前
盛天虹发布了新的文献求助10
21秒前
英俊的铭应助Fader采纳,获得10
22秒前
23秒前
安妮发布了新的文献求助10
24秒前
元谷雪发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760949
求助须知:如何正确求助?哪些是违规求助? 5526930
关于积分的说明 15398694
捐赠科研通 4897597
什么是DOI,文献DOI怎么找? 2634253
邀请新用户注册赠送积分活动 1582378
关于科研通互助平台的介绍 1537706