DeepGraFT: A novel semantic segmentation auxiliary ROI-based deep learning framework for effective fundus tessellation classification

人工智能 计算机科学 分割 机器学习 深度学习 队列 分级(工程) 眼底(子宫) 接收机工作特性 模式识别(心理学) 医学 放射科 病理 工程类 土木工程
作者
Yinghao Yao,Jiaying Yang,Haojun Sun,Hengte Kong,Sheng Wang,Ke Xu,Wei Dai,Siyi Jiang,QingShi Bai,Shilai Xing,Jian Yuan,Xinting Liu,Fan Lü,Zhenhui Chen,Jia Qu,Jianzhong Su
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107881-107881 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107881
摘要

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyy001完成签到,获得积分10
刚刚
忐忑的鞅发布了新的文献求助50
1秒前
重要铃铛发布了新的文献求助60
2秒前
yanziwu94发布了新的文献求助30
2秒前
充电宝应助Queen采纳,获得10
2秒前
3秒前
冷漠的馄饨完成签到 ,获得积分10
3秒前
3秒前
科目三应助Wanting采纳,获得10
3秒前
3秒前
与山发布了新的文献求助10
3秒前
4秒前
金光闪闪完成签到,获得积分10
4秒前
xc41992发布了新的文献求助30
5秒前
小二郎应助辛谷方松永旭采纳,获得10
5秒前
5秒前
西红柿炒番茄完成签到,获得积分10
6秒前
Jasper应助曙光采纳,获得10
7秒前
隐形曼青应助QY采纳,获得10
7秒前
7秒前
8秒前
bkagyin应助jiao采纳,获得10
8秒前
玉七发布了新的文献求助10
8秒前
快乐难敌发布了新的文献求助10
8秒前
8秒前
睡不醒发布了新的文献求助10
9秒前
要减肥岩发布了新的文献求助10
10秒前
10秒前
11秒前
lingck发布了新的文献求助10
11秒前
leo完成签到,获得积分10
11秒前
11秒前
11秒前
Liskiat2021完成签到,获得积分10
11秒前
qiuxuan100完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
Hawk发布了新的文献求助10
12秒前
勤奋艳血完成签到,获得积分10
12秒前
dudu完成签到,获得积分10
13秒前
与山完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009668
求助须知:如何正确求助?哪些是违规求助? 3549638
关于积分的说明 11302957
捐赠科研通 3284181
什么是DOI,文献DOI怎么找? 1810535
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355